You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Heat and Cold Storage 1 is dedicated to sensible and latent heat storage processes. Beginning with some theoretical reminders, this book presents the main situations of low-temperature and high-temperature sensible storage for electricity generation. It also analyzes latent storage on phase-change materials (PCMs) from a fundamental standpoint, presenting the mechanisms to prepare PCMs and their integration into heat and cold storage processes. The most promising materials are presented, along with ways of improving the materials studied. Notions of technico-economic profitability are also defined. Finally, the book looks at heat storage in thermodynamic solar power plants and the wide variety of physical storage principles involved.
With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has e
The book offers recent developments in terms of thermochemical energy storage materials (TCM), covering the full temperature range of application, low, medium and high. Beginning with a review of the recent advancements in the field of adsorption thermal energy storage systems, this book goes on to discuss innovative TC nanomaterials, in terms of synthesis, characterization and validation.
ADVANCES IN ENERGY STORAGE An accessible reference describing the newest advancements in energy storage technologies Advances in Energy Storage: Latest Developments from R&D to the Market is a comprehensive exploration of a wide range of energy storage technologies that use the fundamental energy conversion method. The distinguished contributors discuss the foundational principles, common materials, construction, device operation, and system level performance of the technology, as well as real-world applications. The book also includes examinations of the industry standards that apply to energy storage technologies and the commercial status of various kinds of energy storage. The book has be...
Energy efficiency is finally a common sense term. Nowadays almost everyone knows that using energy more efficiently saves money, reduces the emissions of greenhouse gasses and lowers dependence on imported fossil fuels. We are living in a fossil age at the peak of its strength. Competition for securing resources for fuelling economic development is increasing, price of fuels will increase while availability of would gradually decline. Small nations will be first to suffer if caught unprepared in the midst of the struggle for resources among the large players. Here it is where energy efficiency has a potential to lead toward the natural next step - transition away from imported fossil fuels! Someone said that the only thing more harmful then fossil fuel is fossilized thinking. It is our sincere hope that some of chapters in this book will influence you to take a fresh look at the transition to low carbon economy and the role that energy efficiency can play in that process.
Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures.
Heat and Cold Storage 2 focuses on thermochemical sorption storage processes – that is, absorption, adsorption and chemical sorption. This book first analyzes the principles of sorption and defines the criteria for selecting the materials to be used, before presenting the three sorption storage technologies. It details the functioning of the absorption cycle in order to highlight the future challenges of this method. Next, the book examines storage by physical adsorption. Then, it presents the fundamentals of this phenomenon and a description of solid-gas adsorption cycles and systems, followed by a number of examples of prototype installations. Finally, the book describes the phenomenon of heat storage by chemical sorption from the scale of the reactive material to the scale of the process, before putting the state of the art of possible improvements into perspective and illustrating various applications.
As the 21st century nears, there is a need to seriously reconsider many aspects of modeling and controlling large, complex, man-made systems. Integration of technologies and functions requires deep interdisciplinary expertise and technical breadth for successful implementation. Large scale systems theory can play a central role in this effort and it is a strongly held belief that this approach will continue to be of major importance in the future.
Natural heating and cooling of buildings helps to improve energy efficiency in the built environment. This book considers the principles of roof design and specific systems and cooling techniques. The authors explain the fundamental principles of roof cooling and describe in detail the relevant components, applications, built precedents, recent experimental work and key design considerations. Specific systems and techniques are examined, including the main advantages and disadvantages of each strategy. Environmental functions are considered in terms of protective strategies and selective strategies. Protective strategies include solar control, thermal insulation, heat storage and thermal inertia. Selective strategies include radiative, evaporative and convective cooling and planting of roofs. Traditional and current roof construction practices are described, exemplified by case studies from across Europe. Including a free CD-ROM with software that enables readers to evaluate their own designs, this book will be invaluable for architects and engineers who wish to create buildings that are more energy-efficient.