You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Several types of brain injuries are causes of acquired temporal lobe epilepsy (TLE). The seizure-free "latent period" that often follows the brain injury is of unknown mechanistic significance but is commonly considered as the "epileptogenic" period characterized by gradual pathogenic processes leading to the onset of clinically detectable epilepsy. Acute convulsive status epilepticus (SE) is often associated with an adverse developmental outcome characterized by learning disabilities related to the cumulative effects of seizures and development of TLE. The symptomatic manifestations of TLE appear only after a widespread irreversible damage of entorhinal cortex, and hippocampus, the brain ar...
A collection of standard and cutting-edge techniques for using Xenopus oocytes and oocytes/egg extracts to reconstitute biological and cellular processes. These readily reproducible methods take advantage of the oocyte's impressive protein abundance, its striking protein translation capacity, and its breathtaking possibilities for the assembly of infectious viral particles by single cell injection of multiple RNAs. The authors focus on the versatility of frog oocytes and egg extracts in cell biology and signal transduction, and cover all the major uses of oocytes/extracts as experimental models.
Bridges the gap between electromagnetics and circuits by addressing electrometric modeling (EM) using the Partial Element Equivalent Circuit (PEEC) method This book provides intuitive solutions to electromagnetic problems by using the Partial Element Equivalent Circuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non-orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, i...
Neuronal nicotinic receptors are key molecules for signal transduction in a number of neuronal pathways. They are widely distributed in the brain and are known to be involved in cognitive tasks, including learning and memory, in smoking addiction and in several brain diseases, such as Alzheimer's and Parkinson's dementias, schizophrenia, and epilepsy. This book provides a comprehensive review of the field, starting with a historical perspective and dealing with the molecular structure of these receptors, their biophysical and pharmacological properties, their distribution in central and peripheral nervous systems, and their major involvement in brain functions. Particular emphasis is paid to drugs (both new and old) that are useful in the diagnosis and treatment of diseases involving neuronal nicotinic receptors. Finally, the relevance of these receptors in smoking addiction is carefully evaluated, together with future trends and the latest results.
None
None