You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.
Treats subjects directly related to nonlinear materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.
The Mechanics and Thermodynamics of Continua presents a unified treatment of continuum mechanics and thermodynamics that emphasises the universal status of the basic balances and the entropy imbalance. These laws are viewed as fundamental building blocks on which to frame theories of material behaviour. As a valuable reference source, this book presents a detailed and complete treatment of continuum mechanics and thermodynamics for graduates and advanced undergraduates in engineering, physics and mathematics. The chapters on plasticity discuss the standard isotropic theories and, in addition, crystal plasticity and gradient plasticity.
The twentieth century was defined by physics. From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it. Almost everything we think we know about the nature of our world comes from one theory of physics. This theory was discovered and refined in the first thirty y...
Computational Physics is now a discipline in its own right, comparable with theoretical and experimental physics. Computational Materials Science concentrates on the calculation of materials properties starting from microscopic theories. It has become a powerful tool in industrial research for designing new materials, modifying materials properties and optimizing chemical processes. This book focusses on the application of computational methods in new fields of research, such as nanotechnology, spintronics and photonics, which will provide the foundation for important technological advances in the future. Methods such as electronic structure calculations, molecular dynamics simulations and beyond are presented, the discussion extending from the basics to the latest applications.
Examines the advances made in the field in recent years and looks at the various methods now used; ideal for graduate students and researchers.
Introduces students to the key research topics within modern solid state physics with the minimum of mathematics.
Suitable for graduate students in chemical physics, statistical physics, and physical chemistry, this text develops an innovative, probabilistic approach to statistical mechanics. The treatment employs Gauss's principle and incorporates Bose-Einstein and Fermi-Dirac statistics to provide a powerful tool for the statistical analysis of physical phenomena. The treatment begins with an introductory chapter on entropy and probability that covers Boltzmann's principle and thermodynamic probability, among other topics. Succeeding chapters offer a case history of black radiation, examine quantum and classical statistics, and discuss methods of processing information and the origins of the canonical distribution. The text concludes with explorations of statistical equivalence, radiative and material phase transitions, and the kinetic foundations of Gauss's error law. Bibliographic notes complete each chapter.
The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python programming language. Python has become very popular, particularly for physics education and large scienti...
Covering theory and practical industry usage of the finite element method, this highly-illustrated step-by-step approach thoroughly introduces methods using ANSYS.