You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This collection of original papers related to the Israeli GAFA seminar (on Geometric Aspects of Functional Analysis) from the years 2006 to 2011 continues the long tradition of the previous volumes, which reflect the general trends of Asymptotic Geometric Analysis, understood in a broad sense, and are a source of inspiration for new research. Most of the papers deal with various aspects of the theory, including classical topics in the geometry of convex bodies, inequalities involving volumes of such bodies or more generally, logarithmically-concave measures, valuation theory, probabilistic and isoperimetric problems in the combinatorial setting, volume distribution on high-dimensional spaces and characterization of classical constructions in Geometry and Analysis (like the Legendre and Fourier transforms, derivation and others). All the papers here are original research papers.
The interactions between concentration, isoperimetry and functional inequalities have led to many significant advances in functional analysis and probability theory. Important progress has also taken place in combinatorics, geometry, harmonic analysis and mathematical physics, with recent new applications in random matrices and information theory. This will appeal to graduate students and researchers interested in the interplay between analysis, probability, and geometry.
Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.
This volume is an original collection of articles by 44 leading mathematicians on the theme of the future of the discipline. The contributions range from musings on the future of specific fields, to analyses of the history of the discipline, to discussions of open problems and conjectures, including first solutions of unresolved problems. Interestingly, the topics do not cover all of mathematics, but only those deemed most worthy to reflect on for future generations. These topics encompass the most active parts of pure and applied mathematics, including algebraic geometry, probability, logic, optimization, finance, topology, partial differential equations, category theory, number theory, differential geometry, dynamical systems, artificial intelligence, theory of groups, mathematical physics and statistics.
View the abstract.
In recent years, the interaction between harmonic analysis and convex geometry has increased which has resulted in solutions to several long-standing problems. This collection is based on the topics discussed during the Research Semester on Harmonic Analysis and Convexity at the Institute for Computational and Experimental Research in Mathematics in Providence RI in Fall 2022. The volume brings together experts working in related fields to report on the status of major problems in the area including the isomorphic Busemann-Petty and slicing problems for arbitrary measures, extremal problems for Fourier extension and extremal problems for classical singular integrals of martingale type, among others.
View the abstract.
The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.
This volume reflects the variety of areas where Maz'ya's results are fundamental, influential and/or pioneering. New advantages in such areas are presented by world-recognized experts and include, in particularly, Beurling's minimum principle, inverse hyperbolic problems, degenerate oblique derivative problems, the Lp-contractivity of the generated semigroups, some class of singular integral operators, general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities,domains with rough boundaries, integral and supremum operators, finite rank Toeplitz operators, etc.
This volume contains the proceedings of the conference ``Analysis, Geometry and Quantum Field Theory'' held at Potsdam University in September 2011, which honored Steve Rosenberg's 60th birthday. The papers in this volume cover a wide range of areas, including Quantum Field Theory, Deformation Quantization, Gerbes, Loop Spaces, Index Theory, Determinants of Elliptic Operators, K-theory, Infinite Rank Bundles and Mathematical Biology.