You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematical models are increasingly used to guide public health policy decisions and explore questions in infectious disease control. Written for readers without advanced mathematical skills, this book provides an introduction to this area.
For epidemiologists, evolutionary biologists, and health-care professionals, real-time and predictive modeling of infectious disease is of growing importance. This book provides a timely and comprehensive introduction to the modeling of infectious diseases in humans and animals, focusing on recent developments as well as more traditional approaches. Matt Keeling and Pejman Rohani move from modeling with simple differential equations to more recent, complex models, where spatial structure, seasonal "forcing," or stochasticity influence the dynamics, and where computer simulation needs to be used to generate theory. In each of the eight chapters, they deal with a specific modeling approach or ...
This book deals with infectious diseases -- viral, bacterial, protozoan and helminth -- in terms of the dynamics of their interaction with host populations. The book combines mathematical models with extensive use of epidemiological and other data. This analytic framework is highly useful for the evaluation of public health strategies aimed at controlling or eradicating particular infections. Such a framework is increasingly important in light of the widespread concern for primary health care programs aimed at such diseases as measles, malaria, river blindness, sleeping sickness, and schistosomiasis, and the advent of AIDS/HIV and other emerging viruses. Throughout the book, the mathematics ...
This book is designed to be a practical study in infectious disease dynamics. The book offers an easy to follow implementation and analysis of mathematical epidemiology. The book focuses on recent case studies in order to explore various conceptual, mathematical, and statistical issues. The dynamics of infectious diseases shows a wide diversity of pattern. Some have locally persistent chains-of-transmission, others persist spatially in ‘consumer-resource metapopulations’. Some infections are prevalent among the young, some among the old and some are age-invariant. Temporally, some diseases have little variation in prevalence, some have predictable seasonal shifts and others exhibit viole...
This groundbreaking book argues that philosophy is not just useful, but vital, for thinking coherently about priorities in health policy and public policy.
This book provides a systematic introduction to the fundamental methods and techniques and the frontiers of ? along with many new ideas and results on ? infectious disease modeling, parameter estimation and transmission dynamics. It provides complementary approaches, from deterministic to statistical to network modeling; and it seeks viewpoints of the same issues from different angles, from mathematical modeling to statistical analysis to computer simulations and finally to concrete applications.
Covers a range of essential topics from a survey of important historical epidemics to study designs for infectious disease investigations. The first part of the text covers ID epidemiology background and methodology, whereas the second focuses on specific diseases as examples of different transmission modalities. TB, HIV and Influenza are among the pathogens discussed in great detail. Includes four new chapters on immunology, measles, meningococcal disease, and vector-borne infections. The HIV chapter has been expanded to include issues of host genetics as well as a review of behavioral interventions.
None
Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statist...