You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Surveys the control of human spinal cord circuits, in normal movement and in disease states.
First multi-year cumulation covers six years: 1965-70.
This collection of contributions on the subject of the neural mechanisms of sensorimotor control resulted from a conference held in Cairns, Australia, September 3-6, 2001. While the three of us were attending the International Union of Physiological Sciences (IUPS) Congress in St Petersburg, Russia, in 1997, we discussed the implications of the next Congress being awarded to New Zealand. We agreed to organise a satellite to this congress in an area of mutual interest -the neuroscience of movement and sensation. Australia has a long-standing and enviable reputation in the field of neural mechanisms of sensorimotor control. Arguably this reached its peak with the award of a Nobel Prize to Sir ...
Afferent Control of Posture and Locomotion
Neuromechanics of Human Movement, Fifth Edition, draws on the disciplines of neurophysiology and physics to explore how the nervous system controls the actions of muscles to produce human motion. This contemporary approach is much different from the traditional approach, which focuses solely on mechanics and does not consider the role of the sensorimotor system in the control of human movement. Authored by Roger Enoka, a widely recognized and esteemed scholar in neuromechanics, this influential text is an essential resource in biomechanics, motor learning, and applied physiology, making complex information accessible to students. With material based on updated research in the field, this fif...
Connections define the functions of neurons: information flows along connections, as well as growth factors and viruses, and even neuronal death may progress through connections. Knowledge of how the various parts of the brain are interconnected to form functional systems is a prerequisite for the proper understanding of data from all fields in the neurosciences. Clinical Neuroanatomy: Brain Circuitry and Its Disorders bridges the gap between neuroanatomy and clinical neurology. It emphasizes human and primate data in the context of disorders of brain circuitry which are so common in neurological practice. In addition, numerous clinical cases demonstrate how normal brain circuitry may be interrupted and to what effect. Following an introduction into the organization and vascularisation of the human brain and the techniques to study brain circuitry, the main neurofunctional systems are discussed, including the somatosensory, auditory, visual, motor, autonomic and limbic systems, the cerebral cortex and complex cerebral functions.
This is a timely review of the mechanisms underlying the presynaptic control of synaptic transmission and the role they play in sensory and motor behavior. Early chapters offer a detailed account of the anatomy, biophysics, and physiology of synaptic transmission at the peripheral and central synapses, focusing on the presynaptic control of transmitter release. Later chapters explore the organization of neural pathways leading to the presynaptic inhibition of transmitter release in segmental reflex pathways. A final section provides examples of the operation of presynaptic control mechanisms during specific sensory and motor functions in mammals, including humans. Integrating synaptic transmission and CNS functions at the systems level, this volume will be of particular interest to researchers studying both areas.
Edited and authored by a wealth of international experts in neuroscience and related disciplines, this key new resource aims to offer medical students and graduate researchers around the world a comprehensive introduction and overview of modern neuroscience. Neuroscience research is certain to prove a vital element in combating mental illness in its various incarnations, a strategic battleground in the future of medicine, as the prevalence of mental disorders is becoming better understood each year. Hundreds of millions of people worldwide are affected by mental, behavioral, neurological and substance use disorders. The World Health Organization estimated in 2002 that 154 million people glob...
Studies of human movement have proliferated in recent years, and there have been many studies of spinal pathways in humans, their role in movement, and their dysfunction in neurological disorders. This comprehensive reference surveys the literature related to the control of spinal cord circuits in human subjects, showing how they can be studied, their role in normal movement, and how they malfunction in disease states. Chapters are highly illustrated and consistently organised, reviewing, for each pathway, the experimental background, methodology, organisation and control, role during motor tasks, and changes in patients with CNS lesions. Each chapter concludes with a helpful resume that can be used independently of the main text to provide practical guidance for clinical studies. This will be essential reading for research workers and clinicians involved in the study, treatment and rehabilitation of movement disorders.