You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Resonance Energy Transfer offers a comprehensive theoretical treatment, up-to-date experimental data, and an extensive list of important references, making it an invaluable reference for those who wish to make full use of this powerful tool in physical, chemical, or biological research.
This book describes advances in both experimental and theoretical treatments in the field of energy transfer processes that are relevant to various fields, such as spectroscopy, laser technology, phosphors, artificial solar energy conversion, and photobiology. It presents the principles and available techniques through specific examples. In addition, it examines current and possible applications, including the most recent developments, and projects future advances and research possibilities in the field.
None
An exploration of the role of alternative energy sources in the world today. It covers the uses of this form of energy, how they were discovered, and how their use is changing. It also examines how energy can be transformed from one state to another and the conservation of energy.
A comprehensive study of energy through text and many colorful photos. Includes detailed text and many colorful photos.
An up-to-date comprehensive text useful for graduate students and academic researchers in the field of energy transfers in fluid flows. The initial part of the text covers discussion on energy transfer formalism in hydrodynamics and the latter part covers applications including passive scalar, buoyancy driven flows, magnetohydrodynamic (MHD), dynamo, rotating flows and compressible flows. Energy transfers among large-scale modes play a critical role in nonlinear instabilities and pattern formation and is discussed comprehensively in the chapter on buoyancy-driven flows. It derives formulae to compute Kolmogorov's energy flux, shell-to-shell energy transfers and locality. The book discusses the concept of energy transfer formalism which helps in calculating anisotropic turbulence.
Whether in a solar thermal power plant or at the heart of a nuclear reactor, convection is an important mode of energy transfer. This mode is unique; it obeys specific rules and correlations that constitute one of the bases of equipment-sizing equations. In addition to standard aspects of convention, this book examines transfers at very high temperatures where, in order to ensure the efficient transfer of energy for industrial applications, it is becoming necessary to use particular heat carriers, such as molten salts, liquid metals or nanofluids. With modern technologies, these situations are becoming more frequent, requiring appropriate consideration in design calculations. Energy Transfers by Convection also studies the sizing of electronic heat sinks used to ensure the dissipation of heat and thus the optimal operation of circuit boards used in telecommunications, audio equipment, avionics and computers.
This second edition is based on the successful concept of the first edition in presenting a unified perspective on molecular charge and energy transfer processes. The authors bridge the regimes of coherent and dissipative dynamics, thus establishing the connection between classic rate theories and modern treatments of ultrafast phenomena. The book serves as an introduction for graduate students and researchers. Among the new topics of this second edition are - semiclassical and quantum-classical hybrid formulations of molecular dynamics - the basics of femtosecond nonlinear spectroscopy - electron transfer through molecular bridges and proteins - multidimensional tunneling in proton transfer reactions - two-exciton states and exciton annihilation in biological and nonbiological chromophore complexes More illustrating examples as well as an enlarged reference list are added. A new chapter gives an introduction into the theory of laser pulse control of molecular transfer processes.
Special topic volume with invited peer reviewed papers only.