You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The objective of this book is to present for the first time the complete algorithm for roots of the general quintic equation with enough background information to make the key ideas accessible to non-specialists and even to mathematically oriented readers who are not professional mathematicians. The book includes an initial introductory chapter on group theory and symmetry, Galois theory and Tschirnhausen transformations, and some elementary properties of elliptic function in order to make some of the key ideas more accessible to less sophisticated readers. The book also includes a discussion of the much simpler algorithms for roots of the general quadratic, cubic, and quartic equations before discussing the algorithm for the roots of the general quintic equation. A brief discussion of algorithms for roots of general equations of degrees higher than five is also included. "If you want something truly unusual, try [this book] by R. Bruce King, which revives some fascinating, long-lost ideas relating elliptic functions to polynomial equations." --New Scientist
This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynam...
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
This book helps students at the advanced undergraduate and beginning graduate levels to develop connections between the algebra, geometry, and analysis that they know, and to better appreciate the totality of what they have learned. The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem - solving the quintic. The problem is approached from two directions: the first is Felix Klein's nineteenth-century approach, using the icosahedron. The second approach presents recent works of Peter Doyle and Curt McMullen, which update Klein's use of transcendental functions to a solution through pure iteration.
This volume covers the topic in functional equations in a broad sense and is written by authors who are in this field for the past 50 years. It contains the basic notions of functional equations, the methods of solving functional equations, the growth of functional equations in the last four decades and an extensive reference list on fundamental research papers that investigate the stability results of different types of functional equations and functional inequalities. This volume starts by taking the reader from the fundamental ideas to higher levels of results that appear in recent research papers. Its step-by-step expositions are easy for the reader to understand and admire the elegant results and findings on the stability of functional equations.
This book is a study of how a particular vision of the unity of mathematics, often called geometric function theory, was created in the 19th century. The central focus is on the convergence of three mathematical topics: the hypergeometric and related linear differential equations, group theory, and on-Euclidean geometry. The text for this second edition has been greatly expanded and revised, and the existing appendices enriched. The exercises have been retained, making it possible to use the book as a companion to mathematics courses at the graduate level.
What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.