You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the story of the intellectual and social life of a community, and of its interactions with the wider world. For 800 years mathematics has been researched and studied at Oxford, and the subject and its teaching have undergone profound changes during that time. This highly readable and beautifully illustrated book reveals the richness and influence of Oxford's mathematical tradition and the fascinating characters who helped to shape it. The story begins with the founding of the university of Oxford and the establishing of the medieval curriculum, in which mathematics had an important role. The Black Death, the advent of printing, the founding of the university of Cambridge, and the Newtonian revolution all had a great influence on the later development of mathematics at Oxford. So too did many well-known figures: Robert Boyle, Christopher Wren, Edmond Halley, Benjamin Jowett, Charles Lutwidge Dodgson, G. H. Hardy, to name but a few. Later chapters bring us to the twentieth century, and the book ends with some entertaining reminiscences by Sir Michael Atiyah of the thirty years he spent as an Oxford mathematician.
The development of computing has reawakened interest in algorithms. Often neglected by historians and modern scientists, algorithmic procedures have been instrumental in the development of fundamental ideas: practice led to theory just as much as the other way round. The purpose of this book is to offer a historical background to contemporary algorithmic practice.
The book presents the history of ICMI trough a prosopographical approach. In other words, it pays a lot of attention to the actors of the International movement. The portraits of the members of the ICMI Central Committees (1908-1936) and ICMI Executive Committees (1952-2008), and other eminent figures in ICMI history, who have passed away in the first 100 years of its life, are the guiding thread of the volume. Each portrait includes: · Biographical information · An outline of the various contributions made by the individual in question to the study of problems pertaining to mathematics teaching/education · Primary bibliography · Secondary with particular attention to the publications co...
The letters that Ramanujan wrote to G. H. Hardy on January 16 and February 27, 1913, are two of the most famous letters in the history of mathematics. These and other letters introduced Ramanujan and his remarkable theorems to the world and stimulated much research, especially in the 1920s and 1930s. This book brings together many letters to, from, and about Ramanujan. The letters came from the National Archives in Delhi, the Archives in the State of Tamil Nadu, and a variety of other sources. Helping to orient the reader is the extensive commentary, both mathematical and cultural, by Berndt and Rankin; in particular, they discuss in detail the history, up to the present day, of each mathematical result in the letters. Containing many letters that have never been published before, this book will appeal to those interested in Ramanujan's mathematics as well as those wanting to learn more about the personal side of his life. Ramanujan: Letters and Commentary was selected for the CHOICE list of Outstanding Academic Books for 1996.
This highly comprehensive handbook provides a substantial advance in the computation of elementary and special functions of mathematics, extending the function coverage of major programming languages well beyond their international standards, including full support for decimal floating-point arithmetic. Written with clarity and focusing on the C language, the work pays extensive attention to little-understood aspects of floating-point and integer arithmetic, and to software portability, as well as to important historical architectures. It extends support to a future 256-bit, floating-point format offering 70 decimal digits of precision. Select Topics and Features: references an exceptionally...
This volume collects together all of Russell's philosophical papers inspired by his work with Whitehead on 'Principia Mathematica'.
This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.
This book is a collection of creative pieces-poems, short stories, essays, play excerpts-that give shape to mathematical and scientific content. This book portrays by example how various people work creatively with ideas from mathematics and other sciences. Creative writing about the content of mathematics and science is rare, and creative writing
This book is a history of complex function theory from its origins to 1914, when the essential features of the modern theory were in place. It is the first history of mathematics devoted to complex function theory, and it draws on a wide range of published and unpublished sources. In addition to an extensive and detailed coverage of the three founders of the subject – Cauchy, Riemann, and Weierstrass – it looks at the contributions of authors from d’Alembert to Hilbert, and Laplace to Weyl. Particular chapters examine the rise and importance of elliptic function theory, differential equations in the complex domain, geometric function theory, and the early years of complex function t...