Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Harmonic Analysis
  • Language: en
  • Pages: 335

Harmonic Analysis

  • Type: Book
  • -
  • Published: 2006-11-14
  • -
  • Publisher: Springer

None

Introduction to Potential Theory
  • Language: en
  • Pages: 315

Introduction to Potential Theory

This monograph is devoted to harmonic analysis and potential theory. The authors study these essentials carefully and present recent researches based on the papers including by authors in an accessible manner for graduate students and researchers in pure and applied analysis.

Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2)
  • Language: en
  • Pages: 469

Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2)

  • Type: Book
  • -
  • Published: 2017-07-10
  • -
  • Publisher: Springer

This book is the second of a two volume series. Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book features fully-refereed, high-quality papers exploring new results and trends in weighted norm inequalities, Schur-Agler class functions, complex analysis, dynamical systems, and dyadic harmonic analysis. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. A survey of the two weight problem for the Hilbert transform and an expository article on the Clark model to the case of non-singul...

Introduction to Orthogonal, Symplectic, and Unitary Representations of Finite Groups
  • Language: en
  • Pages: 305
Harmonic Analysis and Partial Differential Equations
  • Language: en
  • Pages: 190

Harmonic Analysis and Partial Differential Equations

This volume contains the Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, held June 11-15, 2012, in El Escorial, Madrid, Spain. Included in this volume is the written version of the mini-course given by Jonathan Bennett on Aspects of Multilinear Harmonic Analysis Related to Transversality. Also included, among other papers, is a paper by Emmanouil Milakis, Jill Pipher, and Tatiana Toro, which reflects and extends the ideas presented in the mini-course on Analysis on Non-smooth Domains delivered at the conference by Tatiana Toro. The topics of the contributed lectures cover a wide range of the field of Harmonic Analysis and Partial Differential Equations and illustrate the fruitful interplay between the two subfields.

An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation
  • Language: en
  • Pages: 112

An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation

The authors define axiomatically a large class of function (or distribution) spaces on $N$-dimensional Euclidean space. The crucial property postulated is the validity of a vector-valued maximal inequality of Fefferman-Stein type. The scales of Besov spaces ($B$-spaces) and Lizorkin-Triebel spaces ($F$-spaces), and as a consequence also Sobolev spaces, and Bessel potential spaces, are included as special cases. The main results of Chapter 1 characterize our spaces by means of local approximations, higher differences, and atomic representations. In Chapters 2 and 3 these results are applied to prove pointwise differentiability outside exceptional sets of zero capacity, an approximation property known as spectral synthesis, a generalization of Whitney's ideal theorem, and approximation theorems of Luzin (Lusin) type.

The Hilbert Function of a Level Algebra
  • Language: en
  • Pages: 154

The Hilbert Function of a Level Algebra

Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.

Basic Global Relative Invariants for Nonlinear Differential Equations
  • Language: en
  • Pages: 386

Basic Global Relative Invariants for Nonlinear Differential Equations

The problem of deducing the basic relative invariants possessed by monic homogeneous linear differential equations of order $m$ was initiated in 1879 with Edmund Laguerre's success for the special case $m = 3$. It was solved in number 744 of the Memoirs of the AMS (March 2002), by a procedure that explicitly constructs, for any $m \geq3$, each of the $m - 2$ basic relative invariants. During that 123-year time span, only a few results were published about the basic relative invariants for other classes of ordinary differential equations. With respect to any fixed integer $\, m \geq 1$, the author begins by explicitly specifying the basic relative invariants for the class $\, \mathcal{C {m,2 ...

Geometric Set Theory
  • Language: en
  • Pages: 345

Geometric Set Theory

This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo–Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.

Homological and Homotopical Aspects of Torsion Theories
  • Language: en
  • Pages: 224

Homological and Homotopical Aspects of Torsion Theories

In this paper the authors investigate homological and homotopical aspects of a concept of torsion which is general enough to cover torsion and cotorsion pairs in abelian categories, $t$-structures and recollements in triangulated categories, and torsion pairs in stable categories. The proper conceptual framework for this study is the general setting of pretriangulated categories, an omnipresent class of additive categories which includes abelian, triangulated, stable, and moregenerally (homotopy categories of) closed model categories in the sense of Quillen, as special cases. The main focus of their study is on the investigation of the strong connections and the interplay between (co)torsion...