Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Bernoulli Potential in Superconductors
  • Language: en
  • Pages: 268

Bernoulli Potential in Superconductors

  • Type: Book
  • -
  • Published: 2007-09-28
  • -
  • Publisher: Springer

The motion of electrons in superconductors seems to exceed our imagination based on daily experience with Newtonian mechanics. This book shows that the classical concepts, such as the balance of forces acting on electrons, are useful for understanding superconductivity. The electrostatic field plays a natural part in this balance as it mediates forces between electrons at long distances.

The Vortex State
  • Language: en
  • Pages: 330

The Vortex State

One of the most spectacular consequences of the description of the superfluid condensate in superfluid He or in superconductors as a single macroscopic quantum state is the quantization of circulation, resulting in quantized vortex lines. This book draws no distinction between superfluid He3 and He4 and superconductors. The reader will find the essential introductory chapters and the most recent theoretical and experimental progress in our understanding of the vortex state in both superconductors and superfluids, from lectures given by leading experts in the field, both experimentalists and theoreticians, who gathered in Cargèse for a NATO ASI. The peculiar features related to short coherence lengths, 2D geometry, high temperatures, disorder, and pinning are thoroughly discussed.

Condensed Matter Theories
  • Language: en
  • Pages: 645

Condensed Matter Theories

Pt. A. Statistical mechanics, magnetism, quantum and nonlinear dynamics. The groundstates and phases of the two-dimensional fully frustrated XY model / P. Minnhagen, S. Bernhardsson and B.J. Kim. 2D Ising model with competing interactions and its application to clusters and arrays of [symbol]-rings, graphene and adiabatic quantum computing / A. O'Hare, F.V. Kusmartsev and K.I. Kugel. Concerning the equation of state for a partially ionized system / G.A. Baker Jr. Quasiclassical Fourier path integral quantum correction terms to the kinetic energy of interacting quantum many-body systems / K.A. Gernoth. Ergodicity and chaos in a system of harmonic oscillators / M.H. Lee. Chaotic modes in scale...

Superconductors
  • Language: en
  • Pages: 455

Superconductors

The book includes 17 chapters written by noted scientists and young researchers and dealing with various aspects of superconductivity, both theoretical and experimental. The authors tried to demonstrate their original vision and give an insight into the examined problems. A balance between theory and experiment was preserved at least from the formal viewpoint (9 and 8, respectively). The readers should be warned that many of the problems studied here are far from being solved and are treated on the basis of competing viewpoints. The reason is that such is the state of the art! Science of superconductivity develops rapidly and new unexpected discoveries are expected in the nearest future.

100 Years of Superconductivity
  • Language: en
  • Pages: 866

100 Years of Superconductivity

Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in supe

Phase Transitions and Relaxation in Systems with Competing Energy Scales
  • Language: en
  • Pages: 456

Phase Transitions and Relaxation in Systems with Competing Energy Scales

Systems with competing energy scales are widespread and exhibit rich and subtle behaviour, although their systematic study is a relatively recent activity. This text presents lectures given at a NATO Advanced Study Institute reviewing the current knowledge and understanding of this fascinating subject, particularly with regard to phase transitions and dynamics, at an advanced tutorial level. Both general and specific aspects are considered, with competitions having several origins; differences in intrinsic interactions, interplay between intrinsic and extrinsic effects, such as geometry and disorder; irreversibility and non-equilibration. Among the specific physical application areas are supercooled liquids and glasses, high-temperature superconductors, flux or vortex pinning and motion, charge density waves, domain growth and coarsening, and electron solidification.

Physics and Materials Science of Vortex States, Flux Pinning and Dynamics
  • Language: en
  • Pages: 792

Physics and Materials Science of Vortex States, Flux Pinning and Dynamics

A discussion by an assembly of expert physicists and materials scientists, embracing the specific features of vortex-pin interactions, the modes of different kinds of vortex motion under the action of Lorenz force, and the mechanisms of dissipation. The effects of transport and screening currents, superimposed AC magnetic fields and the microwave electromagnetic irradiation on vortex behaviour define the electromagnetic properties of a high-Tc superconducting material. The mechanisms driving the depinning of vortices and the dynamics of their motion determine the critical current density and its file dependence, the mechanisms of energy dissipation, and linear and nonlinear resistivity, AC losses, and noise in electronic circuitry. The book therefore has direct implications for the development of new devices and components in electrical engineering, modern electronics, computer technology, and microwave communication.

Transport Properties Of Superconductors - Proceedings Of The International Conference
  • Language: en
  • Pages: 808

Transport Properties Of Superconductors - Proceedings Of The International Conference

This Conference is designed to cover the entire field of current-carrying properties of superconductors, either metallic alloys or the new high-Tc metallic oxides. Related topics will be treated as well as the large scale applications. Topics covered include magnetization and flux behaviour, current transport and critical currents, Josephson junctions and proximity effect, microwave absorption and rf surface resistance, thermal conductivity and specific heat, Hall effect and thermoelectric power, thermal fluctuations and paraconductivity, applications of high-Tc materials.

Magneto-Optical Imaging
  • Language: en
  • Pages: 356

Magneto-Optical Imaging

Magneto-Optical Imaging has developed rapidly over the last decade to emerge as a leading technique to directly visualise the static and dynamic magnetic behaviour of materials, capable of following magnetic processes on the scale of centimeters to sub-microns and at timescales from hours to nanoseconds. The images are direct, real-time, and give space-resolved information, such as ultrafast magnetic processes and revealing the motion of individual vortices in superconductors. The book is a fully up-to-date report of the present status of the technique.

Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors
  • Language: en
  • Pages: 74

Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors

Common methods of local magnetic imaging display either a high spatial resolution and relatively poor field sensitivity (MFM, Lorentz microscopy), or a relatively high field sensitivity but limited spatial resolution (scanning SQUID microscopy). Since the magnetic field of a nanoparticle or nanostructure decays rapidly with distance from the structure, the achievable spatial resolution is ultimately limited by the probe-sample separation. This thesis presents a novel method for fabricating the smallest superconducting quantum interference device (SQUID) that resides on the apex of a very sharp tip. The nanoSQUID-on-tip displays a characteristic size down to 100 nm and a field sensitivity of 10^-3 Gauss/Hz^(1/2). A scanning SQUID microsope was constructed by gluing the nanoSQUID-on-tip to a quartz tuning-fork. This enabled the nanoSQUID to be scanned within nanometers of the sample surface, providing simultaneous images of sample topography and the magnetic field distribution. This microscope represents a significant improvement over the existing scanning SQUID techniques and is expected to be able to image the spin of a single electron.