You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts
Parallel Algorithms for Linear Models provides a complete and detailed account of the design, analysis and implementation of parallel algorithms for solving large-scale linear models. It investigates and presents efficient, numerically stable algorithms for computing the least-squares estimators and other quantities of interest on massively parallel systems. The monograph is in two parts. The first part consists of four chapters and deals with the computational aspects for solving linear models that have applicability in diverse areas. The remaining two chapters form the second part, which concentrates on numerical and computational methods for solving various problems associated with seemin...
The application of engineering principles in divergent fields such as management science and communications as well as the advancement of several approaches in theory and computation have led to growing interest in queueing models, creating the need for a comprehensive text. Emphasizing Markovian structures and the techniques that occur in differen
Proven Material for a Course on the Introduction to the Theory and/or on the Applications of Classical Nonparametric Methods Since its first publication in 1971, Nonparametric Statistical Inference has been widely regarded as the source for learning about nonparametric statistics. The fifth edition carries on this tradition while thoroughly revising at least 50 percent of the material. New to the Fifth Edition Updated and revised contents based on recent journal articles in the literature A new section in the chapter on goodness-of-fit tests A new chapter that offers practical guidance on how to choose among the various nonparametric procedures covered Additional problems and examples Improv...
Virtually any random process developing chronologically can be viewed as a time series. In economics, closing prices of stocks, the cost of money, the jobless rate, and retail sales are just a few examples of many. Developed from course notes and extensively classroom-tested, Applied Time Series Analysis includes examples across a variety of fields, develops theory, and provides software to address time series problems in a broad spectrum of fields. The authors organize the information in such a format that graduate students in applied science, statistics, and economics can satisfactorily navigate their way through the book while maintaining mathematical rigor. One of the unique features of ...
Computing has become essential for the modeling, analysis, and optimization of systems. This book is devoted to algorithms, computational analysis, and decision models. The chapters are organized in two parts: optimization models of decisions and models of pricing and equilibria.
This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
This book gathers contributions presented at the 7th International Conference on Soft Methods in Probability and Statistics SMPS 2014, held in Warsaw (Poland) on September 22-24, 2014. Its aim is to present recent results illustrating new trends in intelligent data analysis. It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics. Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems.
In the area of applied statistics, scientists use statistical distributions to model a wide range of practical problems, from modeling the size grade distribution of onions to modeling global positioning data. To apply these probability models successfully, practitioners and researchers must have a thorough understanding of the theory as well as a
This book addresses issues associated with the interface of computing, optimisation, econometrics and financial modeling, emphasizing computational optimisation methods and techniques. The first part addresses optimisation problems and decision modeling, plus applications of supply chain and worst-case modeling and advances in methodological aspects of optimisation techniques. The second part covers optimisation heuristics, filtering, signal extraction and time series models. The final part discusses optimisation in portfolio selection and real option modeling.