You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Pacific Rim Conference originally started with one research concentration only - binary star research. The first Conference was held in Beijing, China, 1985, the second one in Seoul and Taejon, South Korea, 1990 and the third one in Chiang Mai, Thailand, 1995. In recent years, the conference series evolved into a much broader area of stellar astrophysics. The first such conference was held in Hong Kong in 1997. Kwong-Sang Cheng, a. k. a. one of the three Musketeers, documented the "accidental" development in writing in the Proceedings of the 1997 Pacific Rim Conference on Stellar Astrophysics (Volume 138 of the ASP Conference Series)! The meeting at Hong Kong University of Science and Te...
Quantum mechanics is one of the principle pillars of modern physics. It also remains a topic of great interest to mathematicians. Since its discovery it has inspired and been inspired by many topics within modern mathematics, including functional analysis and operator algebras, Lie groups, Lie algebras and their representations, principle bundles, distribution theory, and much more. Written with beginning graduate students in mathematics in mind, this book provides a thorough treatment of (nonrelativistic) quantum mechanics in a style that is leisurely, without the usual theorem-proof grammar of pure mathematics, while remaining mathematically honest. The author takes the time to fully develop the required mathematics and employs a consistent mathematical presentation to clarify the often-confusing notation of physics texts. Along the way the reader encounters several topics requiring more advanced mathematics than found in many discussions of the subject, making for a fascinating course in how mathematics and physics interact.
None
None
Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.