You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This concise textbook introduces an innovative computational approach to quantum mechanics. Over the course of this engaging and informal book, students are encouraged to take an active role in learning key concepts by working through practical exercises. The book equips readers with some basic methodology and a toolbox of scientific computing methods, so they can use code to simulate and directly visualize how quantum particles behave. The important foundational elements of the wave function and the Schrödinger equation are first introduced, then the text gradually builds up to advanced topics including relativistic, open, and non-Hermitian quantum physics. This book assumes familiarity with basic mathematics and numerical methods, and can be used to support a two-semester advanced undergraduate course. Source code and solutions for every book exercise involving numerical implementation are provided in Python and MATLAB®, along with supplementary data. Additional problems are provided online for instructor use with locked solutions.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This series provides a one-stop resource for following progress in this interdisciplinary area. - Publishes articles, invited reviews and proceedings of major international conferences and workshops - Written by leading international researchers in quantum and theoretical chemistry - Highlights important interdisciplinary developments
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This series provides a one-stop resource for following progress in this interdisciplinary area. Publishes articles, invited reviews and proceedings of major international conferences and workshops Written by leading international researchers in quantum and theoretical chemistry Highlights important interdisciplinary developments.
Quantum Mechanics will enthuse graduate students and researchers and equip them with effective methodologies for challenging applications in atomic, molecular, and optical sciences and in condensed matter and nuclear physics also. This book attempts to make fundamental principles intuitively appealing. It will assist readers in learning difficult methods. Exposition of fundamental principles includes a discussion on position-momentum and energy-time uncertainty, angular momentum algebra, parity, bound and unbound eigenstates of an atom, approximation methods, time-reversal symmetry in collisions, and on a measurable time delay in scattering. It also provides an early introduction to Feynman path integrals and to geometric phase. A novel Lambert-W method to solve quantum mechanical problems is also introduced. It seeks to enable readers gain confidence in applying methods of non-relativistic and relativistic quantum theory rigorously to problems on atomic structure and dynamics, spectroscopy and quantum collisions, and problems on introductory quantum information processing and computing.
This open access volume brings together selected papers from the 8th International Conference on Attosecond Science and Technology. The contributions within represent the latest advances in attosecond science, covering recent progress in ultrafast electron dynamics in atoms, molecules, clusters, surfaces, solids, nanostructures and plasmas, as well as the generation of sub-femtosecond XUV and X-ray pulses, either through table-top laser setups or with X-ray free-electron lasers. In addition to highlighting key advances and outlining the state of the field, the conference and its proceedings serve to introduce junior researchers to the community, promote collaborations, and represent the global and topical diversity of the field.
Zusammenfassung: This book illustrates advanced technologies for imaging electrons and atoms in action in various forms of matter, from atoms and diatoms to protein molecules and condensed matter. The technologies that are described employ ultrafast pulsed lasers, X-ray free electron lasers, and pulsed electron guns, with pulse durations from femtoseconds, suitable to visualize atoms in action, to attoseconds, needed to visualize ballistic electron motion. Advanced theories, indispensable for understanding such ultrafast imaging and spectroscopy data on electrons and atoms in action, are also described. The book consists of three parts. The first part describes probing methods of attosecond electron dynamics in atoms, molecules, liquids, and solids. The second part describes femtosecond structural dynamics and coupling of structural change and electron motion in molecules and solids The last part is dedicated to ultrafast photophysical processes and chemical reactions of protein molecules responsible for biological functions
This meeting continues the series tradition of previous meetings by focussing on the recent changes in our understanding of the behaviour of atomic and molecular few body systems. The diversity of research areas represented at the meeting coupled to a common focal point, reveals different perspective on basic questions of interest, and exposes new conceptual approachs to the dynamics of few body problems. Special emphasis on topics such as collisional behaviour, threshold phenomena, recombination and photoionizations provides a broad overview of the field.
Providing specialist reviews and analyses of contemporary theories, algorithms, and techniques, this series aims to facilitate the effective exploitation of available computing power. The current volume focuses on the theoretical determination of atomic and molecular properties as related to wave functions, electron densities, and total energies.