You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The past few decades have witnessed an increasing interest in the field of multidimensional systems theory. This is concerned with systems whose trajectories depend not on one single variable (usually interpreted as time or frequency), but on several independent variables, such as the coordinates of an image. The behavioural approach introduced by J. C. Willems provides a particularly suitable framework for developing a linear systems theory in several variables. The book deals with the classical concepts of autonomy, controllability, observability, and stabilizability. All the tests and criteria given are constructive in the sense that algorithmic versions may be implemented in modern computer algebra systems, using Gröbner basis techniques. There is a close connection between multidimensional systems theory and robust control of one-dimensional systems with several uncertain parameters. The central link consists in the basic tool of linear fractional transformations. The book concludes with examples from the theory of electrical networks.
This book aims at reviewing recent progress in the direction of algebraic and symbolic computation methods for functional systems, e.g. ODE systems, differential time-delay equations, difference equations and integro-differential equations. In the nineties, modern algebraic theories were introduced in mathematical systems theory and in control theory. Combined with real algebraic geometry, which was previously introduced in control theory, the past years have seen a flourishing development of algebraic methods in control theory. One of the strengths of algebraic methods lies in their close connections to computations. The use of the above-mentioned algebraic theories in control theory has be...
This volume contains survey and original articles presenting the state of the art on the application of Gröbner bases in control theory and signal processing. The contributions are based on talks delivered at the Special Semester on Gröbner Bases and Related Methods at the Johann Radon Institute of Computational and Applied Mathematics (RICAM), Linz, Austria, in May 2006.
This book constitutes the refereed proceedings of the 12th International Workshop on Computer Algebra in Scientific Computing, CASC 2010, held in Tsakhadzor, Armenia, in September 2010. The book includes two invited talks and an abstract in addition to 23 full papers.
This volume contains the proceedings of the "Third Multidisciplinary Symposium on Positive Systems: Theory and Applications (POSTA09)" held in Valencia, Spain, September 2–4, 2009. This is the only world congress whose main topic is focused on this field.
The first volume of the Advances in Robotics and Automatic Control: Reviews, Book Series started by IFSA Publishing in 2018 contains ten chapters written by 32 contributors from 9 countries: Belgium, China, Germany, India, Ireland, Japan, Serbia, Tunisia and USA. We hope that readers will enjoy this book and it can be a valuable tool for those who involved in research and development of various robots and automatic control systems.
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
This volume encompasses prototypical, innovative and emerging examples and benchmarks of Differential-Algebraic Equations (DAEs) and their applications, such as electrical networks, chemical reactors, multibody systems, and multiphysics models, to name but a few. Each article begins with an exposition of modelling, explaining whether the model is prototypical and for which applications it is used. This is followed by a mathematical analysis, and if appropriate, a discussion of the numerical aspects including simulation. Additionally, benchmark examples are included throughout the text. Mathematicians, engineers, and other scientists, working in both academia and industry either on differential-algebraic equations and systems or on problems where the tools and insight provided by differential-algebraic equations could be useful, would find this book resourceful.
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
Differential algebraic equations (DAEs), including so-called descriptor systems, began to attract significant research interest in applied and numerical mathematics in the early 1980s, no more than about three decades ago. In this relatively short time, DAEs have become a widely acknowledged tool to model processes subjected to constraints, in order to simulate and to control processes in various application fields such as network simulation, chemical kinematics, mechanical engineering, system biology. DAEs and their more abstract versions in infinite-dimensional spaces comprise a great potential for future mathematical modeling of complex coupled processes. The purpose of the book is to exp...