You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Enzymatic catalysis has gained considerable attention in recent years as an efficient tool in the preparation of natural products, pharmaceuticals, fine chemicals, and food ingredients. The high selectivity and mild reaction con- tions associated with enzymatic transformations have made this approach an attractive alternative in the synthesis of complex bioactive compounds, which are often difficult to obtain by standard chemical routes. However, the maj- ity of organic compounds are not very soluble in water, which was traditi- ally perceived as the only suitable reaction medium for the application of biocatalysts. The realization that most enzymes can function perfectly well under nearly a...
Two of the recent books in the Methods in Molecular Biology series, Yeast Protocols and Pichia Protocols, have been narrowly focused on yeasts and, in the latter case, particular species of yeasts. Food Microbiology Pro- cols, of necessity, covers a very wide range of microorganisms. Our book treats four categories of microorganisms affecting foods: (1) Spoilage organisms; (2) pathogens; (3) microorganisms in fermented foods; and (4) microorganisms p- ducing metabolites that affect the flavor or nutritive value of foods. Detailed information is given on each of these categories. There are several chapters devoted to the microorganisms associated with fermented foods: these are of increasing importance in food microbiology, and include one bacteriophage that kills the lactic acid bacteria involved in the manufacture of different foods—cottage cheese, yogurt, sauerkraut, and many others. The other nine chapters give procedures for the maintenance of lactic acid bacteria, the isolation of plasmid and genomic DNA from species of Lac- bacillus, determination of the proteolytic activity of lactic acid bacteria, det- mination of bacteriocins, and other important topics.
This book is divided into 5 sections starting with an historic perspective and fundamental aspects on the synthesis and recognition by imprinted polymers. The second section contains 8 up-to-date overview chapters on current approaches to molecular and ion imprinting. This is followed by two chapters on new material morphologies and in the last two sections various analytical applications of imprinted polymers are given, with the last four chapters devoted to the promising field of imprinted polymers in chemical sensors.The authors of this volume have widely different backgrounds; mainly polymer chemistry, organic chemistry, biochemistry and analytical chemistry, which means that this book has an interdisciplinary character and should appeal to a broad audience.
The second edition of this book constitutes a comprehensive manual of new techniques for setting up mammalian cell lines for production of biopharmaceuticals, and for optimizing critical parameters for cell culture considering the whole cascade from lab to final production. The chapters are written by world-renowned experts and the volume’s five parts reflect the processes required for different stages of production. This book is a compendium of techniques for scientists in both industrial and research laboratories that use mammalian cells for biotechnology purposes.
A collection of readily reproducible classic and emerging molecular methods for the laboratory isolation and identification of the pathogens, viruses, and parasites that cause food-borne disease. Among the pathogens covered are specific bacteria, including Salmonella spp, Campylobacter spp., Listeria spp., and Bacillus spp.; viruses, including noroviruses and enteroviruses; and parasites, including Cryptosporidium and seafood nematode worms. The protocols follow the successful Methods in BiotechnologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.
A comprehensive collection of robust methods for the detection of pesticide compounds or their metabolites useful in food, environmental, and biological monitoring, and in studies of exposure via food, water, air, and the skin or lungs. The readily reproducible methods range from gas and liquid chromatography coupled to mass spectrometry detection and other classic detectors, to capillary electrophoresis and immunochemical or radioimmunoassay methods. The authors have focused on extraction and cleanup procedures, in order to develop and optimize more fullyautomated and miniaturized methods, including solid-phase extraction, solid-phase microextraction, microwave-assisted extraction, and on-line tandem liquid chromatography (LC/LC) trace enrichment, among others. The protocols offer step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.
We are in a phase of the evolution of biotechnology in which the true and potential commercial importance of carbohydrates is becoming appre- ated more fully. Progress in providing hard facts to establish the commercial value ofpolysaccharides and oligosaccharides is limited, as always, by lack of funding and by a relative shortage of skilled practitioners in the production and analysis of those materials. Carbohydrate science has a reputation, not unmerited, for technical difficulty owing to the structural similarity of the many monosaccharide monomers and the potential, and real, complexity of oligosaccharides and polysaccharides, particularly heterosaccharides conta- ing many different mo...
This book presents the most innovative recent methodological developments in phytoremediation research, and outlines a variety of the contexts in which phytoremediation has begun to be applied. A significant portion is devoted to groundbreaking methods for the production of plants that are able to degrade, take up, or tolerate the effects of pollutants. The book adopts a multidisciplinary approach to the examination of principles and practices of phytoremediation.
The development of biotechnology over the last 20 years, and particularly the use of recombinant DNA techniques, has rapidly expanded the opportu- ties for human benefits from living resources. Efforts to reduce pollution, p- vent environmental damage, combat microbial infection, improve food production, and so on can each involve fermentation or the environmental - lease of microorganisms. Many products of fermentation technology, such as alcoholic beverages, bread, antibiotics, amino acids, vitamins, enzymes, and others, have been influenced by the progress of recombinant DNA techniques. The development of new products or the more efficient manufacturing of those already being produced oft...
Enzymes and whole cells are able to catalyze the most complex chemical processes under the most benign experimental and environmental conditions. In this way, enzymes and cells could be excellent catalysts for a much more sustainable chemical industry. However, enzymes and cells also have some limitations for nonbiological applications: fine chemistry, food chemistry, analysis, therapeutics, and so on. Enzymes and cells may be unstable, difficult to handle under nonconventional conditions, poorly selective toward synthetic substrates, and so forth. From this point of view, the transformation—from the laboratory to industry—of chemical processes catalyzed by enzymes and cells may be one o...