You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Modal logics, originally conceived in philosophy, have recently found many applications in computer science, artificial intelligence, the foundations of mathematics, linguistics and other disciplines. Celebrated for their good computational behaviour, modal logics are used as effective formalisms for talking about time, space, knowledge, beliefs, actions, obligations, provability, etc. However, the nice computational properties can drastically change if we combine some of these formalisms into a many-dimensional system, say, to reason about knowledge bases developing in time or moving objects.To study the computational behaviour of many-dimensional modal logics is the main aim of this book. ...
This is an overview of the current state of knowledge along with open problems and perspectives, clarified in such fields as non-standard inferences in description logics, logic of provability, logical dynamics and computability theory. The book includes contributions concerning the role of logic today, including unexpected aspects of contemporary logic and the application of logic. This book will be of interest to logicians and mathematicians in general.
This book constitutes the refereed proceedings of the 6th International Conference on Conceptual Structures, ICCS'98, held in Montpellier, France, in August 1998. The 20 revised full papers and 10 research reports presented were carefully selected from a total of 66 submissions; also included are three invited contributions. The volume is divided in topical sections on knowledge representation and knowledge engineering, tools, conceptual graphs and other models, relationships with logics, algorithms and complexity, natural language processing, and applications.
Description logics (DLs) are used to represent structured knowledge. Inference services testing consistency of knowledge bases and computing subconcept/superconcept hierarchies are the main feature of DL systems. Intensive research during the last fifteen years has led to highly optimized systems that allow to reason about knowledge bases efficiently. However, applications often require additional non-standard inferences to support both the construction and the maintenance of knowledge bases, thus making the inference procedures again incomplete. This book, which is a revised version of the author's PhD thesis, constitutes a significant step to fill this gap by providing an excellent formal foundation of the most prominent non-standard inferences. The descriptions given include precise definitions, complete algorithms and thorough complexity analysis. With its solid foundation, the book also serves as a basis for future research.
Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conce...
methods, description logics and related logics, sati?ability modulo theory, decidable logics, reasoning about programs, and higher-order logics.
By presenting state-of-the-art results in logical reasoning and formal methods in the context of artificial intelligence and AI applications, this book commemorates the 60th birthday of Jörg H. Siekmann. The 30 revised reviewed papers are written by former and current students and colleagues of Jörg Siekmann; also included is an appraisal of the scientific career of Jörg Siekmann entitled "A Portrait of a Scientist: Logics, AI, and Politics." The papers are organized in four parts on logic and deduction, applications of logic, formal methods and security, and agents and planning.