You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Like FEM, the Boundary Element Method (BEM) provides a general numerical tool for the solution of complex engineering problems. In the last decades, the range of its applications has remarkably been enlarged. Therefore dynamic and nonlinear problems can be tackled. However they still demand an explicit expression of a fundamental solution, which is only known in simple cases. In this respect, the present book proposes an alternative BEM-formulation based on the Fourier transform, which can be applied to almost all cases relevant in engineering mechanics. The basic principle is presented for the heat equation. Applications are taken from solid mechanics (e.g. poroelasticity, thermoelasticity). Transient and stationary examples are given as well as linear and nonlinear. Completed with a mathematical and mechanical glossary, the book will serve as a comprehensive text book linking applied mathematics to real world engineering problems.
Chemical-mechanical planarization (CMP) has emerged as a critical fabrication technology for advanced integrated circuits. Even as the applications of CMP have diversified and we have begun to understand aspects of the physics and chemistry of the process, a new generation of CMP innovations is unfolding. New slurries and consumables are under development. New applications to novel devices continue to appear. This book, the most recent in a successful series on CMP, offers a review of the advances to date and provides a comprehensive discussion of the future challenges that must be overcome. Presentations from academia, government labs and industry are featured. Topics include; CMP modeling; CMP science; CMP slurries and particles for planarization of copper, oxide, and other materials; planarization applications including shallow trench isolation (STI), copper damascene, and novel devices and CMP integration.
None
None
Every 3rd issue is a quarterly cumulation.
This book addresses probabilistic methods for the evaluation of structural reliability, including the theoretical basis of these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature of the uncertainties and their interplay is then gradually developed. The concepts presented are illustrated by numerous examples throughout the text. The modular approach of the book allows the reader to navigate through the different stages of the methods.