You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book collects the lecture notes of the Summer School on Convex Geometry, held in Cetraro, Italy, from August 30th to September 3rd, 2021. Convex geometry is a very active area in mathematics with a solid tradition and a promising future. Its main objects of study are convex bodies, that is, compact and convex subsets of n-dimensional Euclidean space. The so-called Brunn--Minkowski theory currently represents the central part of convex geometry. The Summer School provided an introduction to various aspects of convex geometry: The theory of valuations, including its recent developments concerning valuations on function spaces; geometric and analytic inequalities, including those which com...
Controllingwissen für Anwenderinnen und Anwender Führungskräften des mittleren und des Top-Managements, die keine klassische Controllingausbildung absolviert haben, jedoch aufgrund von Karriereschritten zunehmend mit Kosten- und Finanzinformationen konfrontiert werden, bietet dieses Buch einen breiten und zugleich tiefgehenden Einblick in das Fachgebiet. Das modulare Lehrkonzept mit zahlreichen Beispielen und Fallstudien erleichtert das autodidaktische Aneignen der Inhalte und ermöglicht es, ein generalistisches Gesamtverständnis von diesem Themenfeld zu entwickeln. Die Neuauflage beinhaltet zahlreiche Aktualisierungen, Ergänzungen sowie Erweiterungen, wie beispielsweise einen Abschnitt zu den zentralen Auswirkungen der Digitalisierung auf das Controlling.
The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.
Auf Basis der Fuzzy Set Theorie stellt Fabian Solbach das Anwendungspotenzial unscharfer Mengen im projektbasierten Kosten- und Investitionsmanagement dar. Er zeigt, wie Unschärfe anhand einer ausgewählten operativen Sicht analysiert werden kann, um Kostenstrukturen frühzeitig im Hinblick auf die Marktanforderungen adäquat gestalten zu können.
Jede Innovation beginnt mit einer Idee. Die menschliche Kreativität und Schaffenskraft ist dafür unumstritten das wertvollste Gut und Potenzial eines Unternehmens. Es hängt aber vielfach vom Reifegrad der Organisationsstruktur und vor allem von der Unternehmenskultur ab, inwieweit die vorhandenen Kreativitätspotenziale wirksam werden. Innovation erfordert je nach Unternehmenssituation und Entwicklungstendenzen im Unternehmensumfeld eine Vision, messbare Ziele und eine klar formulierte Innovationsstrategie. Eine Innovationsstrategie umfasst beispielsweise Teilbereiche wie Markt, Produkt, Dienstleistung, Technologie, Forschung und Entwicklung oder Geschäftsmodell. Die einzelnen Teilbereic...
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Articles on classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis, first published in 1999.
Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.