You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-stat...
Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - "Surveys" contains 11 chapters that provide an up-to-date account of essential aspects of copula models. Part II - "Contributions" collects the extended versions of 6 talks selected from papers presented at the workshop in Warsaw.
The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.
This book covers the latest results in the field of risk analysis. Presented topics include probabilistic models in cancer research, models and methods in longevity, epidemiology of cancer risk, engineering reliability and economical risk problems. The contributions of this volume originate from the 5th International Conference on Risk Analysis (ICRA 5). The conference brought together researchers and practitioners working in the field of risk analysis in order to present new theoretical and computational methods with applications in biology, environmental sciences, public health, economics and finance.
This volume is a collection of articles on reliability systems and Bayesian reliability analysis. Written by reputable researchers, the articles are self-contained and are linked with literature reviews and new research ideas. The book is dedicated to Emeritus Professor Richard E Barlow, who is well known for his pioneering research on reliability theory and Bayesian reliability analysis. Contents: System Reliability Analysis: On Regular Reliability Models (J-C Chang et al.); Bounding System Reliability (J N Hagstrom & S M Ross); Large Excesses for Finite-State Markov Chains (D Blackwell); Ageing Properties: Nonmonotonic Failure Rates and Mean Residual Life Functions (R C Gupta); The Failure...
Repeated measures data arise when the same characteristic is measured on each case or subject at several times or under several conditions. There is a multitude of techniques available for analysing such data and in the past this has led to some confusion. This book describes the whole spectrum of approaches, beginning with very simple and crude methods, working through intermediate techniques commonly used by consultant statisticians, and concluding with more recent and advanced methods. Those covered include multiple testing, response feature analysis, univariate analysis of variance approaches, multivariate analysis of variance approaches, regression models, two-stage line models, approaches to categorical data and techniques for analysing crossover designs. The theory is illustrated with examples, using real data brought to the authors during their work as statistical consultants.
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.
Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis,
Find the right algorithm for your image processing applicationExploring the recent achievements that have occurred since the mid-1990s, Circular and Linear Regression: Fitting Circles and Lines by Least Squares explains how to use modern algorithms to fit geometric contours (circles and circular arcs) to observed data in image processing and comput
This book features a comprehensive review of experimental gravitation. It is a textbook based on the graduate courses on “Experimental Gravitation” given by the authors at their respective universities in Rome: Sapienza and Tor Vergata. A number of different research topics in the field are covered: from the torsion pendulum (still today the tool of choice for measuring small forces or torques) to the large interferometers developed to observe gravitational waves. Techniques that are still under development are also discussed, like the pulsar timing array and space-based detectors of the future. This book is written by experimentalists for experimentalists. While the background physics is summarized for less experienced readers, the emphasis is certainly on experimental verifications: the strategy, the apparatuses, the data analysis and the results of many cornerstone experiments are analyzed and discussed in depth. This textbook serves as a useful resource for both graduate students and professionals working in the increasingly vibrant field of experimental gravity.