You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book discusses the recent developments in robust optimization (RO) and information gap design theory (IGDT) methods and their application for the optimal planning and operation of electric energy systems. Chapters cover both theoretical background and applications to address common uncertainty factors such as load variation, power market price, and power generation of renewable energy sources. Case studies with real-world applications are included to help undergraduate and graduate students, researchers and engineers solve robust power and energy optimization problems and provide effective and promising solutions for the robust planning and operation of electric energy systems.
This book presents integrated optimization methods and algorithms for power system problems along with their codes in MATLAB. Providing a reliable and secure power and energy system is one of the main challenges of the new era. Due to the nonlinear multi-objective nature of these problems, the traditional methods are not suitable approaches for solving large-scale power system operation dilemmas. The integration of optimization algorithms into power systems has been discussed in several textbooks, but this is the first to include the integration methods and the developed codes. As such, it is a useful resource for undergraduate and graduate students, researchers and engineers trying to solve power and energy optimization problems using modern technical and intelligent systems based on theory and application case studies. It is expected that readers have a basic mathematical background.
This book explores the different aspects of energy in human life especially expressing the advanced technologies in renewable energy resources. Due to the environmental pollution caused by fossil fuels and the non-permanent nature of these resources, the move towards the use of renewable energy has accelerated. In recent years, many attempts have been made to improve energy systems' performance by using multi-generation units, and these set-ups have been analyzed from the perspective of energy, exergy, economics, and environmental indicators. The book's primary goal is the effort to introduce new methods for assessing and upgrading the synergy. Therefore it examines sustainable practices such as water-energy-food nexus in poly-generation units, novel desalination systems, and smart greenhouses. One of the significant issues in these energy systems is the storage methods; for instance, carbon capture to reduce environmental pollution and the hydrogen store for the utilization in supplementary fuel. Also, robust optimization, uncertainty and risk-aware probabilistic analysis, energy management, and power supply of sensitive places such as oil rig platforms by renewables are examined.
This book presents design principles, performance assessment and robust optimization of different poly-generation systems using renewable energy sources and storage technologies. Uncertainties associated with demands or the intermittent nature of renewables are considered in decision making processes. Economic and environmental benefits of these systems in comparison with traditional fossil fuels based ones are also provided. Case studies, numerical results, discussions, and concluding remarks have been presented for each proposed system/strategy. This book is a useful tool for students, researchers, and engineers trying to design and evaluate different zero-energy and zero-emission stand-alone grids.
In the environment of energy systems, the effective utilization of both conventional and renewable sources poses a major challenge. The integration of microgrid systems, crucial for harnessing energy from distributed sources, demands intricate solutions due to the inherent intermittency of these sources. Academic scholars engaged in power system research find themselves at the forefront of addressing issues such as energy source estimation, coordination in dynamic environments, and the effective utilization of artificial intelligence (AI) techniques. Intelligent Solutions for Sustainable Power Grids focuses on emerging research areas, this book addresses the uncertainty of renewable energy s...
As the demand for efficient energy sources continues to grow around the globe, electrical systems are becoming more essential in an effort to meet these increased needs. As these systems are being utilized more frequently, it becomes imperative to find ways of optimizing their overall function. The Handbook of Research on Emerging Technologies for Electrical Power Planning, Analysis, and Optimization features emergent methods and research in the systemic and strategic planning of energy usage. Highlighting theoretical perspectives and empirical research, this handbook is a comprehensive reference source for researchers, practitioners, students, and professionals interested in the current advancements and efficient use in power systems.
This book analyzes issues surrounding the efficient integration of demand response programs (DRPs) on operation problems in smart grids. The benefits offered by demand response programs (DRPs) for load-serving entities, grid operators, and electricity consumers are explained, including decreased electricity prices and risk management. In-depth chapters discuss the flexibility of market operations, market power mitigation, and environmental benefits—making this a must-have reference for engineers and related practicing professionals working for organizations in the electricity market, including reliability organizations, distribution companies, transmission companies, and electric end-users.
This book brings together important new contributions covering electric vehicle smart charging (EVSC) from a multidisciplinary group of global experts, providing a comprehensive look at EVSC and its role in meeting long-term goals for decarbonization of electricity generation and transportation. This multidisciplinary reference presents practical aspects and approaches to the technology, along with evidence from its applications to real-world energy systems. Electric Vehicle Integration via Smart Charging is suitable for practitioners and industry stakeholders working on EVSC, as well as researchers and developers from different branches of engineering, energy, transportation, economic, and operation research fields.
Energy systems worldwide are undergoing major transformation as a consequence of the transition towards the widespread use of clean and sustainable energy sources. Basically, this involves massive changes in technical and organizational levels together with tremendous technological upgrades in different sectors ranging from energy generation and transmission systems down to distribution systems. These actions generate huge science and engineering challenges and demands for expert knowledge in the field to create solutions for a sustainable energy system that is economically, environmentally, and socially viable while meeting high security requirements. This book covers these promising and dynamic areas of research and development, and presents contributions in sustainable energy systems planning, integration, and management. Moreover, the book elaborates on a variety of topics, ranging from design and planning of small- to large-scale energy systems to the operation and control of energy networks in different sectors, namely electricity, heat, and transport.