You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed. The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nano sized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes. Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in the library of any scientist involved in carbon based sensing application.
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 2nd International Summer School “Nanotechnology: From Fundamental Research to Innovations” and International Research and Practice Conference “Nanotechnology and Nanomaterials”, NANO-2013, which were held in Bukovel, Ukraine on August 25-September 1, 2013. These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.
The Frontiers in Chemistry Editorial Office team are delighted to present the inaugural “Frontiers in Chemistry: Rising Stars” article collection, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Journal’s Chief Editors in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the chemical sciences, and presents advances in theory, experiment and methodology with applications to co...
Over the past decades, the field of molecular imaging has been rapidly growing involving multiple disciplines such as medicine, biology, chemistry, pharmacology and biomedical engineering. Any molecular imaging procedure requires an imaging probe that is an agent used to visualize, characterize and quantify biological processes in living systems. Such a probe typically consists of an agent that usually produces signal for imaging purpose, a targeting moiety, and a linker connecting the targeting moiety and the signaling agent. Many challenging problems of molecular imaging can be addressed by exploiting the great possibilities offered by modern synthetic organic and coordination chemistry an...
The Frontiers in Materials Editorial Office team are delighted to present the inaugural “Frontiers in Materials: Rising Stars” article collection, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Journal’s Chief Editors in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the materials science and engineering field, and presents advances in theory, experiment and methodology w...
Reactions catalyzed by metalloenzymes have great potential for applications in the biotechnology and pharmaceutical industries. While only a few of these enzymes have yet been used in such applications, in the last few decades numerous efficient, selective, environmentally friendly and economical synthetic analogues have been described, including supramolecular, polymeric, nanoparticulate and lowmolecular- weight organometallic complexes, and metal organic frameworks. In this Research Topic, we present a collection of original research and review articles that show significant recent advances made in the rational design of such artificial metalloenzymes.
Although the seminal work of Fujishima et al. dates back to 1971, TiO2 still remains the most diffused and studied semiconductor, employed in photo-oxidation processes for cleantech (i.e., polluted water and air treatment), in solar fuel production (mainly hydrogen production by water photo splitting), and in Carbon Capture and Utilization (CCU) processes by CO2 photoreduction. The eleven articles, among them three reviews, in this book cover recent results and research trends of various aspects of titanium dioxide photocatalysis, with the chief aim of improving the final efficiency of TiO2-based materials. Strategies include doping, metal co-catalyst deposition, and the realization of compo...
Nanomaterials - structures with characteristic dimensions between 1 and 100 nm -exhibit a variety of unique and tunable chemical and physical properties that have made engineered nanoparticles central components in an array of emerging technologies. The use of nanotechnology is increasing; however its potential adverse effects on human health are n