You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book, which is split into two parts, is about Prof. Zhidong Bai's life and his contributions to statistics and probability. The first part contains an interview with Zhidong Bai conducted by Dr Atanu Biswas from the Indian Statistical Institute, and seven short articles detailing Bai's contributions. The second part is a collection of his selected seminal papers in the areas of random matrix theory, Edgeworth expansion, M-estimation, model selection, adaptive design in clinical trials, applied probability in algorithms, small area estimation, and time series, among others. This book provides an easy access to Zhidong Bai's important works, and serves as a useful reference for researchers who are working in the relevant areas.
Presents a firm mathematical basis for the use of response-adaptive randomization procedures in practice The Theory of Response-Adaptive Randomization in Clinical Trials is the result of the authors' ten-year collaboration as well as their collaborations with other researchers in investigating the important questions regarding response-adaptive randomization in a rigorous mathematical framework. Response-adaptive allocation has a long history in biostatistics literature; however, largely due to the disastrous ECMO trial in the early 1980s, there is a general reluctance to use these procedures. This timely book represents a mathematically rigorous subdiscipline of experimental design involvin...
An interview with Professor Yaoting Zhang / Qiwei Yao and Zhaohai Li -- Significance level in interval mapping / David O. Siegmund and Benny Yakir -- An asymptotic Pythagorean identity / Zhiliang Ying -- A Monte Carlo gap test in computing HPD regions / Ming-Hui Chen [und weitere] -- Estimating restricted normal means using the EM-type algorithms and IBF sampling / Ming Tan, Guo-Liang Tian and Hong-Bin Fang -- An example of algorithm mining: covariance adjustment to accelerate EM and Gibbs / Chuanhai Liu -- Large deviations and deviation inequality for kernel density estimator in L[symbol]-distance / Liangzhen Lei, Liming Wu and Bin Xie -- Local sensitivity analysis of model misspecification...
The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertains to methods or algorithms that select or search ...
This book, which is split into two parts, is about Prof. Zhidong Bai's life and his contributions to statistics and probability. The first part contains an interview with Zhidong Bai conducted by Dr Atanu Biswas from the Indian Statistical Institute, and seven short articles detailing Bai's contributions. The second part is a collection of his selected seminal papers in the areas of random matrix theory, Edgeworth expansion, M-estimation, model selection, adaptive design in clinical trials, applied probability in algorithms, small area estimation, and time series, among others. This book provides an easy access to Zhidong Bai's important works, and serves as a useful reference for researchers who are working in the relevant areas.
In today’s global and highly competitive environment, continuous improvement in the processes and products of any field of engineering is essential for survival. This book gathers together the full range of statistical techniques required by engineers from all fields. It will assist them to gain sensible statistical feedback on how their processes or products are functioning and to give them realistic predictions of how these could be improved. The handbook will be essential reading for all engineers and engineering-connected managers who are serious about keeping their methods and products at the cutting edge of quality and competitiveness.
Praise for the First Edition “All medical statisticians involved in clinical trials should read this book...” - Controlled Clinical Trials Featuring a unique combination of the applied aspects of randomization in clinical trials with a nonparametric approach to inference, Randomization in Clinical Trials: Theory and Practice, Second Edition is the go-to guide for biostatisticians and pharmaceutical industry statisticians. Randomization in Clinical Trials: Theory and Practice, Second Edition features: Discussions on current philosophies, controversies, and new developments in the increasingly important role of randomization techniques in clinical trials A new chapter on covariate-adaptive...
The third SIAM International Conference on Data Mining provided an open forum for the presentation, discussion and development of innovative algorithms, software and theories for data mining applications and data intensive computation. This volume includes 21 research papers.
This book is the first to offer a comprehensive examination of the pharmaceutical industry by following the tortuous course of a new drug as it progresses from early development to final delivery. Richard A. Epstein looks closely at the regulatory framework that surrounds all aspects of making pharmaceutical products today, and he assesses which current legal and regulatory practices make sense and which have gone awry. While critics of pharmaceutical companies call for ever more stringent controls on virtually every aspect of drug development and approval, Epstein cautions that the effect of such an approach will be to stifle pharmaceutical innovation and slow the delivery of beneficial tre...
Peterson's Graduate Programs in Mathematics contains a wealth of information on colleges and universities that offer graduate work in Applied Mathematics, Applied Statistics, Biomathematics, Biometry, Biostatistics, Computational Sciences, Mathematical and Computational Finance, Mathematics, and Statistics. The institutions listed include those in the United States, Canada, and abroad that are accredited by U.S. accrediting bodies. Up-to-date information, collected through Peterson's Annual Survey of Graduate and Professional Institutions, provides valuable information on degree offerings, professional accreditation, jointly offered degrees, part-time and evening/weekend programs, postbaccal...