You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The book concerns sensor data fusion, target tracking, and state estimation in distributed sensor system applications by means of centralized or decentralized fusion methods. This includes multi sensor fusion, target tracking, distributed Kalman Filter, and track-to-track fusion.
Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, and ambiguous data to gather a higher level of situational awareness. In principle, all living creatures are fusing information from their complementary senses to coordinate their actions and to detect and localize danger. In sensor data fusion, this process is transferred to electronic systems, which rely on some ""awareness"" of what is happening in certain areas of interest. By means of probability theory and statistics, it is possible to model the relationship between the state space and the sensor data. The number of ingredients of the resulting Kalman filter is limited, but its applications are not.
Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, and ambiguous data to gather a higher level of situational awareness. In principle, all living creatures are fusing information from their complementary senses to coordinate their actions and to detect and localize danger. In sensor data fusion, this process is transferred to electronic systems, which rely on some "awareness" of what is happening in certain areas of interest. By means of probability theory and statistics, it is possible to model the relationship between the state space and the sensor data. The number of ingredients of the resulting Kalman filter is limited, but its applications are not.
The continuing trend toward connected sensors ("internet of things" and" ubiquitous computing") drives a demand for powerful distributed estimation methodologies. In tracking applications, the distributed Kalman filter (DKF) provides an optimal solution under Kalman filter conditions. The optimal solution in terms of the estimation accuracy is also achieved by a centralized fusion algorithm, which receives all associated measurements. However, the centralized approach requires full communication of all measurements at each time step, whereas the DKF works at arbitrary communication rates since the calculation is fully distributed. A more recent methodology is based on "accumulated state density" (ASD), which augments the states from multiple time instants to overcome spatial cross-correlations. This chapter explains the challenges in distributed tracking. Then, possible solutions are derived, which include the DKF and ASD approach.
This book presents recent issues on theory and practice of Kalman filters, with a comprehensive treatment of a selected number of concepts, techniques, and advanced applications. From an interdisciplinary point of view, the contents from each chapter bring together an international scientific community to discuss the state of the art on Kalman filter-based methodologies for adaptive/distributed filtering, optimal estimation, dynamic prediction, nonstationarity, robot navigation, global navigation satellite systems, moving object tracking, optical communication systems, and active power filters, among others. The theoretical and methodological foundations combined with extensive experimental explanation make this book a reference suitable for students, practicing engineers, and researchers in sciences and engineering.
Sensor networks consist of sensors (e.g., radar and cameras) and processing units (e.g., estimators), where in the former information extraction occurs and in the latter estimates are formed. In decentralized estimation information extracted by sensors has been pre-processed at an intermediate processing unit prior to arriving at an estimator. Pre-processing of information allows for the complexity of large systems and systems-of-systems to be significantly reduced, and also makes the sensor network robust and flexible. One of the main disadvantages of pre-processing information is that information becomes correlated. These correlations, if not handled carefully, potentially lead to underest...
These proceedings of the SAI Intelligent Systems Conference 2016 (IntelliSys 2016) offer a remarkable collection of papers on a wide range of topics in intelligent systems, and their applications to the real world. Authors hailing from 56 countries on 5 continents submitted 404 papers to the conference, attesting to the global importance of the conference’s themes. After being reviewed, 222 papers were accepted for presentation, and 168 were ultimately selected for these proceedings. Each has been reviewed on the basis of its originality, novelty and rigorousness. The papers not only present state-of-the-art methods and valuable experience from researchers in the related research areas; they also outline the field’s future development.
Active filters are key technologies in applications such as telecommunications, advanced control, smart grids, and green transport. This book provides an update of the latest technological progress in signal processing and adaptive filters, with a focus on Kalman filters and applications. It illustrates fundamentals and guides filter design for specific applications, primarily for graduate students, academics, and industrial engineers who are interested in the theoretical, experimental, and design aspects of active filter technologies.