You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.
This compilation of proceedings covering the latest scientific and technological developments in design, development, and applications of engineering ceramics and composites provides a useful one-stop resource for understanding the most important issues in design, development, and applications of engineering ceramics and composites. Logically organized and carefully selected articles give insight into design, development, and applications of engineering ceramics and composites and incorporates the latest developments related to design, development, and applications of engineering ceramics and composites including developments in engineering ceramics, advanced ceramic coatings, and geopolymers.
This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.
This book covers the area of advanced ceramic composites broadly, providing important introductory chapters to fundamentals, processing, and applications of advanced ceramic composites. Within each section, specific topics covered highlight the state of the art research within one of the above sections. The organization of the book is designed to provide easy understanding by students as well as professionals interested in advanced ceramic composites. The various sections discuss fundamentals of nature and characteristics of ceramics, processing of ceramics, processing and properties of toughened ceramics, high temperature ceramics, nanoceramics and nanoceramic composites, and bioceramics and biocomposites.
Covers key principles and methodologies of biomaterials science and tissue engineering with the help of numerous case studies.
This book covers the basics of the biomaterials science its applications to bone tissue engineering. The introductory section describes the most necessary concepts and techniques related to the cell and molecular biology with a particular focus on evaluating the biocompatibility property. The layout of this book facilitates easier understanding of the area of bone tissue engineering. The book integrates the Materials Science and Biological Science. It covers processing and basic material properties of various biocompatible metals and ceramics-based materials, in vitro and in vivo biocompatibility and toxicity assessment in the context of bone tissue engineering, and processing and properties of metal-, ceramic- and polymer-based biocomposites, including the fabrication of porous scaffold materials. The book can be used as a textbook for senior undergraduate and graduate coursework. It will also be a useful reference for researchers and professionals working in the area.
This collection presents papers from the 152nd Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.
Many of the polymers we use every day are highly flammable. Historically, a large number of home fires were caused by ignited polymeric materials until legislation was introduced requiring fire retardants to be added to these materials. Fire retardants increase the time it takes for materials to ignite, providing valuable time to prevent a fire or escape. However, it has become apparent that many of the traditional treatments used as fire retardants are harmful to human health and highly persistent in the environment. With evermore polymeric materials in our homes and lives it is still highly valuable to be able to make fire retardants, but consideration must be given to their environmental impact and sustainability. Green Fire Retardants for Polymeric Materials looks at both the choice of different materials and treatments for improving the fire retardancy of polymeric materials, as well as green approaches to synthesising these fire retardants. It is a timely resource both for green chemists interested in real world applications for their work and polymer scientists keen to increase the sustainability of their products and processes.