You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The International Federation for Structural Concrete (fib) is a pre-normative organization. 'Pre-normative' implies pioneering work in codification. This work has now been realized with the fib Model Code 2010. The objectives of the fib Model Code 2010 are to serve as a basis for future codes for concrete structures, and present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. The fib Model Code 2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers. The fib Model Code 2010 was produced during the last ten years through an exceptional effort by Joost Walraven (Convener; Delft University of Technology, The Netherlands), Agnieszka Bigaj-van Vliet (Technical Secretary; TNO Built Environment and Geosciences, The Netherlands) as well as experts out of 44 countries from five continents.
The International Federation for Structural Concrete (fib) is a pre-normative organization. 'Pre-normative' implies pioneering work in codification. This work has now been realized with the fib Model Code 2010. The objectives of the fib Model Code 2010 are to serve as a basis for future codes for concrete structures, and present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. The fib Model Code 2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers. The fib Model Code 2010 was produced during the last ten years through an exceptional effort by Joost Walraven (Convener; Delft University of Technology, The Netherlands), Agnieszka Bigaj-van Vliet (Technical Secretary; TNO Built Environment and Geosciences, The Netherlands) as well as experts out of 44 countries from five continents.
None
Fibre Reinforced Concrete (FRC) is a composite material characterized by an enhanced post-cracking tensile residual strength, due to the capacity of fibres to bridge the crack faces by means of pull-out mechanism. Due to a better knowledge of FRC and the recent developments worldwide of guidelines for structural design, the fib Special Activity Group 5, who prepared the new fib Model Code, decided to introduce some sections on new materials and in particular on FRC structural design. At that time, working Groups TG 8.3 (“Fibre reinforced concrete”) and TG 8.6 (“Ultra high performance fibre reinforced concrete”) of fib prepared these sections of the new fib Model Code concerning FRC d...
The objectives of MC2010 are to (a) serve as a basis for future codes for concrete structures, and (b) present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. MC2010 includes the whole life cycle of a concrete structure, from design and construction to conservation (assessment, maintenance, strengthening) and dismantlement, in one code for buildings, bridges and other civil engineering structures. Design is largely based on performance requirements. The chapter on materials is extended with new types of concrete and reinforcement (such as fibres and non-metallic reinforcements). The fib Model Code 2010 also gives corresponding explanations in a separate column of the document. Additionally, MC2010 is supported by background documents that have already been (or will soon be) published in fib bulletins and journal articles. MC2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement.
fib Bulletin 61 is a continuation of fib Bulletin 16 (2002). Again the bulletin’s main objective is to demonstrate the application of the FIP Recommendations “Practical Design of Structural Concrete”, and especially to illustrate the use of strut-and-tie models to design discontinuity regions (D-regions) in concrete structures. Bulletin 61 presents 14 examples, most of which are existing structures built in recent years. Although some of the presented structures can be considered to be quite important and, in some instances, complex, the chosen examples are not intended to be exceptional. The main aim is to look at specific design aspects, by selecting D-regions of the presented struct...
The first international FRC workshop supported by RILEM and ACI was held in Bergamo (Italy) in 2004. At that time, a lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. The workshop aim was placed on the identification of applications, guidelines, and research needs in order for this advanced technology to be transferred to professional practice. The second international FRC workshop, held in Montreal (Canada) in 2014, was the first ACI-fib joint technical event. Many of the objectives identified in 2004 had been achieved by various groups of researchers who shared a common interest in extending the...
This design code for concrete structures is the result of a complete revision to the former Model Code 1978, which was produced jointly by CEB and FIP. The 1978 Model Code has had a considerable impact on the national design codes in many countries. In particular, it has been used extensively for the harmonisation of national design codes and as basic reference for Eurocode 2. The 1990 Model Code provides comprehensive guidance to the scientific and technical developments that have occurred over the past decade in the safety, analysis and design of concrete structures. It has already influenced the codification work that is being carried out both nationally and internationally and will continue so to do.
Punching is considered to be one of the most difficult problems in structural concrete design and mechanical models or theoretical analyses were developed rather late in the history of concrete research attempts. This fib Bulletin reviews the development of design models and theoretical analyses since the CEB Bulletin 168 Punching Shear in Reinforced Concrete - State-of-the-Art Report published in 1985. The role of the concrete tensile strength was specially addressed. In this respect the present bulletin is also following-up the CEB Bulletin 237 Concrete Tension and Size Effects - Utilisation of concrete tension in structural concrete design and relevance of size effect - Contributions from...