You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fibre-reinforced plastic (FRP) composite materials are basically of two types. The first type is short fibres reinforced in a plastic matrix, and the other type continuous (long) fibres reinforced in a plastic matrix. The exact distinction between a short and a continuous fibre is discussed in Chapter 1. Continuous fibre-reinforced composite materials are referred to by many labels: FRP composites, advanced composites, fibrous composites, composite materials or simply composites. These terms are now generally accepted to mean the same type of material, namely, continuous fibre reinforced in plastic. In this book, the term fibrous composites is used to define a continuous fibre reinforced in ...
"Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.
This book, by a leading thinker with 30 years experience in the field, is the first devoted to fibrous composites in biology. It tackles a major unsolved problem in developmental biology - how does chemistry create architecture outside cells? Fibrous composites occur in all skeletal systems including plant cell walls, insect cuticles, moth eggshells, bone and cornea. They function like man-made fibreglass, with fibres set in a matrix. The fibrous molecules are long, extracellular and water-insoluble and to be effective they must be orientated strategically. The underlying hypothesis of this book is that the fibres are orientated by self-assembly just outside the cells during a mobile liquid crystalline phase prior to stabilization. The commonest orientations of the fibres are plywood laminates (orthogonal and helicoidal), and as parallel fibres. These may be imitated in vitro by liquid crystalline chemicals. The book takes an interdisciplinary approach and will be relevant to biologists, biochemists, biophysicists, material scientists and to liquid crystals chemists.
The Fourth Conference on Fibrous Composites in Structural Design was a successor to the First-to-Third Conferences on Fibrous Composites in Flight Vehicle Design sponsored by the Air Force (First and Second Conferences, September 1973 and May 1974) and by NASA (Third Conference, November 1975) which were aimed at focusing national attention on flight vehicle applications of a new class of fiber reinforced materials, the advanced com posites, which afforded weight savings and other advantages which had not been previously available. The Fourth Conference, held at San Diego, California, 14-17 November 1978, was the fi rst of these conferences to be jointly sponsored by the Army, Navy and Ai r ...
Provides introductory information on carbon fiber composites, including polymer-matrix, metal matrix, carbon-matrix, ceramic-matrix, and hybrid composites. Places emphasis on materials rather than mechanics.
Comprehensive coverage of micro and macro mechanics of composite materials. * Case studies on designing composite materials and laminates. * Uses both SI and U.S. Customary units throughout. * This is the only book that covers laminated tubes and damage mechanics and the only one that presents an extensive array of actual experimental results for the nonlinear, inelastic response of polymeric and metallic matrix composites.
Annotation Proceedings of a symposium on [title] held in Phoenix, AZ, Nov. 1986. Data and test methods on: extreme/hostile environments, design allowables, property/behavior specific testing. Annotation copyrighted by Book News, Inc., Portland, OR.
This book provides an introduction to fundamental concepts of solid mechanics for the uninitiated. It also includes a concise review of fundamentals for those who have been away from the field for a time or are studying for a final exam or engineering license exam. The coverage ranges from fundamental definitions through constitutive equations, axial loading, torsion, bending, thermal effects, stability, pressure vessels, plates and shells, computational mechanics, and fibrous composite materials.
Fibre reinforced polymer (FRP) composites are used in almost every type of advanced engineering structure, with their usage ranging from aircraft, helicopters and spacecraft through to boats, ships and offshore platforms and to automobiles, sports goods, chemical processing equipment and civil infrastructure such as bridges and buildlings. The usage of FRP composites continues to grow at an impessive rate as these materials are used more in their existing markets and become established in relatively new markets such as biomedical devices and civil structures. A key factor driving the increased applications of composites over the recent years is the development of new advanced forms of FRP materials. This includes developments in high performance resin systems and new styles of reinforcement, such as carbon nanotubes and nanoparticles. This book provides an up-to-date account of the fabrication, mechanical properties, delamination resistance, impact tolerance and applications of 3D FRP composites. The book focuses on 3D composites made using the textile technologies of weaving, braiding, knitting and stiching as well as by z-pinning.
None