Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

U.S. Research Institutes in the Mathematical Sciences
  • Language: en
  • Pages: 41

U.S. Research Institutes in the Mathematical Sciences

This report is the result of a fast-track study of U.S. mathematical sciences research institutes done in response to a request from the National Science Foundation (NSF). The task of the Committee on U.S. Mathematical Sciences Research Institutes was to address the following three questions: What are the characteristic features of effective mathematical sciences research institutes in the ways that they further mathematical research in the United States, and are there ways that the current configuration can be improved? What kinds of institutes should there be in the United States, and how many does the nation need? How should U.S. mathematical sciences research institutes be configured (with regard to, for example, diversity of operating formats, distribution of mathematical fields, and interinstitute cooperation or coordination) in order to have the nation's mathematical research enterprise continue to be most productive and successful?

Seminar on Fermat's Last Theorem
  • Language: en
  • Pages: 278

Seminar on Fermat's Last Theorem

The most significant recent development in number theory is the work of Andrew Wiles on modular elliptic curves. Besides implying Fermat's Last Theorem, his work establishes a new reciprocity law. Reciprocity laws lie at the heart of number theory. Wiles' work draws on many of the tools of modern number theory and the purpose of this volume is to introduce readers to some of this background material. Based on a seminar held during 1993-1994 at the Fields Institute for Research in Mathematical Sciences, this book contains articles on elliptic curves, modular forms and modular curves, Serre's conjectures, Ribet's theorem, deformations of Galois representations, Euler systems, and annihilators of Selmer groups. All of the authors are well known in their field and have made significant contributions to the general area of elliptic curves, Galois representations, and modular forms. Features: Brings together a unique collection of number theoretic tools. Makes accessible the tools needed to understand one of the biggest breakthroughs in mathematics. Provides numerous references for further study.

Toric Topology
  • Language: en
  • Pages: 518

Toric Topology

This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on mo...

Efficient Graph Representations.
  • Language: en
  • Pages: 342

Efficient Graph Representations.

None

The Mathematical Sciences in 2025
  • Language: en
  • Pages: 223

The Mathematical Sciences in 2025

The mathematical sciences are part of nearly all aspects of everyday life-the discipline has underpinned such beneficial modern capabilities as Internet search, medical imaging, computer animation, numerical weather predictions, and all types of digital communications. The Mathematical Sciences in 2025 examines the current state of the mathematical sciences and explores the changes needed for the discipline to be in a strong position and able to maximize its contribution to the nation in 2025. It finds the vitality of the discipline excellent and that it contributes in expanding ways to most areas of science and engineering, as well as to the nation as a whole, and recommends that training for future generations of mathematical scientists should be re-assessed in light of the increasingly cross-disciplinary nature of the mathematical sciences. In addition, because of the valuable interplay between ideas and people from all parts of the mathematical sciences, the report emphasizes that universities and the government need to continue to invest in the full spectrum of the mathematical sciences in order for the whole enterprise to continue to flourish long-term.

Geometry, Mechanics, and Dynamics
  • Language: en
  • Pages: 506

Geometry, Mechanics, and Dynamics

  • Type: Book
  • -
  • Published: 2015-04-16
  • -
  • Publisher: Springer

This book illustrates the broad range of Jerry Marsden’s mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the various fields and learn about geometric approaches and perspectives toward those topics that will be new for them as well.

Strengthening the Linkages Between the Sciences and the Mathematical Sciences
  • Language: en
  • Pages: 134

Strengthening the Linkages Between the Sciences and the Mathematical Sciences

Over three hundred years ago, Galileo is reported to have said, "The laws of nature are written in the language of mathematics." Often mathematics and science go hand in hand, with one helping develop and improve the other. Discoveries in science, for example, open up new advances in statistics, computer science, operations research, and pure and applied mathematics which in turn enabled new practical technologies and advanced entirely new frontiers of science. Despite the interdependency that exists between these two disciplines, cooperation and collaboration between mathematical scientists and scientists have only occurred by chance. To encourage new collaboration between the mathematical ...

Nonlinear Dynamics and Time Series
  • Language: en
  • Pages: 262

Nonlinear Dynamics and Time Series

Lars Ahlfors's Lectures on Quasiconformal Mappings, based on a course he gave at Harvard University in the spring term of 1964, was first published in 1966 and was soon recognized as the classic it was shortly destined to become. These lectures develop the theory of quasiconformal mappings from scratch, give a self-contained treatment of the Beltrami equation, and cover the basic properties of Teichmuller spaces, including the Bers embedding and the Teichmuller curve. It isremarkable how Ahlfors goes straight to the heart of the matter, presenting major results with a minimum set of prerequisites. Many graduate students and other mathematicians have learned the foundations of the theories of...

Universality and Renormalization
  • Language: en
  • Pages: 414

Universality and Renormalization

This book covers a wide range of phenomena in the natural sciences dominated by notions of universality and renormalization. The contributions in this volume are equally broad in their approach to these phenomena, offering the mathematical as well as the perspective of the applied sciences. They explore renormalization theory in quantum field theory and statistical physics, and its connections to modern mathematics as well as physics on scales from the microscopic to the macroscopic. Information for our distributors: Titles in this series are co-published with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).

Interdisciplinary Perspectives on Math Cognition
  • Language: en
  • Pages: 344

Interdisciplinary Perspectives on Math Cognition

This is an anthology of contemporary studies from various disciplinary perspectives written by some of the world's most renowned experts in each of the areas of mathematics, neuroscience, psychology, linguistics, semiotics, education, and more. Its purpose is not to add merely to the accumulation of studies, but to show that math cognition is best approached from various disciplinary angles, with the goal of broadening the general understanding of mathematical cognition through the different theoretical threads that can be woven into an overall understanding. This volume will be of interest to mathematicians, cognitive scientists, educators of mathematics, philosophers of mathematics, semioticians, psychologists, linguists, anthropologists, and all other kinds of scholars who are interested in the nature, origin, and development of mathematical cognition.