Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

First-order Logic
  • Language: en
  • Pages: 180

First-order Logic

Considered the best book in the field, this completely self-contained study is both an introduction to quantification theory and an exposition of new results and techniques in "analytic" or "cut free" methods. The focus in on the tableau point of view. Topics include trees, tableau method for propositional logic, Gentzen systems, more. Includes 144 illustrations.

First-Order Logic and Automated Theorem Proving
  • Language: en
  • Pages: 258

First-Order Logic and Automated Theorem Proving

There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scientists. Although there is a common core to all such books they will be very dif ferent in emphasis, methods, and even appearance. This book is intended for computer scientists. But even this is not precise. Within computer sci ence formal logic turns up in a number of areas, from program verification to logic programming to artificial intelligence. This book is intended for computer scientists interested in automated theorem proving in classical logic. To be more precise yet, it is essentially a theoretical treatment, not a how-to book, although how-to issu...

Extensions of First-Order Logic
  • Language: en
  • Pages: 414

Extensions of First-Order Logic

An introduction to many-sorted logic as an extension of first-order logic.

First-order Logic
  • Language: en
  • Pages: 356

First-order Logic

An introduction to principles and notation of modern symbolic logic, for those with no prior courses. The structure of material follows that of Quine's Methods of Logic, and may be used as an introduction to that work, with sections on truth-functional logic, predicate logic, relational logic, and identity and description. Exercises are based on problems designed by authors including Quine, John Cooley, Richard Jeffrey, and Lewis Carroll. Annotation copyrighted by Book News, Inc., Portland, OR

Metalogic
  • Language: en
  • Pages: 306

Metalogic

This work makes available to readers without specialized training in mathematics complete proofs of the fundamental metatheorems of standard (i.e., basically truth-functional) first order logic. Included is a complete proof, accessible to non-mathematicians, of the undecidability of first order logic, the most important fact about logic to emerge from the work of the last half-century. Hunter explains concepts of mathematics and set theory along the way for the benefit of non-mathematicians. He also provides ample exercises with comprehensive answers.

The Foundations of Mathematics
  • Language: en
  • Pages: 251

The Foundations of Mathematics

  • Type: Book
  • -
  • Published: 2009
  • -
  • Publisher: Unknown

Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choi...

First-Order Modal Logic
  • Language: en
  • Pages: 300

First-Order Modal Logic

This is a thorough treatment of first-order modal logic. The book covers such issues as quantification, equality (including a treatment of Frege's morning star/evening star puzzle), the notion of existence, non-rigid constants and function symbols, predicate abstraction, the distinction between nonexistence and nondesignation, and definite descriptions, borrowing from both Fregean and Russellian paradigms.

Modelling Puzzles in First Order Logic
  • Language: en
  • Pages: 344

Modelling Puzzles in First Order Logic

Keeping students involved and actively learning is challenging. Instructors in computer science are aware of the cognitive value of modelling puzzles and often use logical puzzles as an efficient pedagogical instrument to engage students and develop problem-solving skills. This unique book is a comprehensive resource that offers teachers and students fun activities to teach and learn logic. It provides new, complete, and running formalisation in Propositional and First Order Logic for over 130 logical puzzles, including Sudoku-like puzzles, zebra-like puzzles, island of truth, lady and tigers, grid puzzles, strange numbers, or self-reference puzzles. Solving puzzles with theorem provers can be an effective cognitive incentive to motivate students to learn logic. They will find a ready-to-use format which illustrates how to model each puzzle, provides running implementations, and explains each solution. This concise and easy-to-follow textbook is a much-needed support tool for students willing to explore beyond the introductory level of learning logic and lecturers looking for examples to heighten student engagement in their computer science courses.

First Order Mathematical Logic
  • Language: en
  • Pages: 244

First Order Mathematical Logic

"Attractive and well-written introduction." — Journal of Symbolic Logic The logic that mathematicians use to prove their theorems is itself a part of mathematics, in the same way that algebra, analysis, and geometry are parts of mathematics. This attractive and well-written introduction to mathematical logic is aimed primarily at undergraduates with some background in college-level mathematics; however, little or no acquaintance with abstract mathematics is needed. Divided into three chapters, the book begins with a brief encounter of naïve set theory and logic for the beginner, and proceeds to set forth in elementary and intuitive form the themes developed formally and in detail later. I...

A Concise Introduction to Logic
  • Language: en

A Concise Introduction to Logic

None