You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Florentin Smarandache is a professor of mathematics at the University of New Mexico, United States. He got his MSc in Mathematics and Computer Science from the University of Craiova, Romania, PhD in Mathematics from the State University of Kishinev, and Postdoctoral in Applied Mathematics from Okayama University of Sciences, Japan. He is the founder of neutrosophy (generalization of dialectics), neutrosophic set, logic, probability and statistics since 1995 and has published hundreds of papers and books on neutrosophic physics, superluminal and instantaneous physics, unmatter, quantum paradoxes, absolute theory of relativity, redshift and blueshift due to the medium gradient and refraction i...
This is a photoalbum of life sequences impicturing different scientific and cultural activities and performances of Prof. Dr. Florentin Smarandache, professor of mathematics at the University of New Mexico.
Florentin Smarandache is known as scientist and writer. He writes in three languages: Romanian, French, and English. He graduated the Department of Mathematics and Computer Science at the University of Craiova in 1979 first of his class, earned a Ph. D. in Mathematics from the State University Moldova at Kishinev in 1997, and continued postdoctoral studies at various American Universities such as University of Texas at Austin, University of Phoenix, etc. after emigration.
Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data. For example, the population or sample size might not be exactly determinate because of some individuals that partially belong to the population or sample, and partially they do not belong, or individuals whose appurtenance is completely unknown. Also, there are population or sample individuals whose data could be indeterminate. In this book, we develop the 1995 notion of neutrosophic statistics. We present various practical examples. It is possible to define the neutrosophic statistics in many ways, because there are various types of indeterminacies, depending on the problem to solve.
Florentin Smarandache is a professor of mathematics at the University of New Mexico, United States. He got his MSc in Mathematics and Computer Science from the University of Craiova, Romania, PhD in Mathematics from the State University of Kishinev, and Postdoctoral in Applied Mathematics from Okayama University of Sciences, Japan. He is the founder of neutrosophy (generalization of dialectics), neutrosophic set, logic, probability and statistics since 1995 and has published hundreds of papers and books on neutrosophic physics, superluminal and instantaneous physics, unmatter, quantum paradoxes, absolute theory of relativity, redshift and blueshift due to the medium gradient and refraction i...
In this chapter, we introduce neutrosophic triplet cosets for neutrosophic triplet G-module and neutrosophic triplet quotient G-module. Then, we give some definitions and examples for neutrosophic triplet quotient G-module and neutrosophic triplet cosets. Also, we obtain isomorphism theorems for neutrosophic triplet G-modules and we prove isomorphism theorems for neutrosophic triplet G-modules.
In this book the authors define, describe, and develop the notion of complex valued graphs, complex neutrosophic valued graphs, and mod complex valued graphs in a systematic way. However complex neural networks have been analyzed and studied as early as 2003. This book gives several applications of them in medical diagnosis, soft computing, and so on.
Papers concerning any of the Smarandache type functions, sequences, numbers, algorithms, inferior/superior f-parts, magic squares, palindromes, functional iterations, semantic paradoxes, Non-Euclidean geometries, manifolds, conjectures, open problems, algebraic structures, neutrosophy, neutrosophic logic/set/probability, hypothesis that there is no speed barrier in the universe, quantum paradoxes, etc. have been selected for this volume. Contributors are from Australia, China, England, Germany, India, Ireland, Israel, Italy, Japan, Malaysia, Morocco, Portugal, Romania, Spain, USA. Most of the papers are in English, a few of them are in Spanish, Portuguese, or German.
The purpose of this paper is to introduce new types of neutrosophic crisp sets with three types 1, 2, 3. After given the fundamental definitions and operations, we obtain several properties, and discussed the relation ship between neutrosophic crisp sets and others. Also, we introduce and study the neutrosophic crisp point and neutrosophic crisp relations. Possible applications to database are touched upon.