You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Building on Wilson's renormalization group, the authors have developed a unified approach that not only reproduces known results but also yields new results. A systematic exposition of the contemporary theory of phase transitions, the book includes detailed discussions of phenomena in Heisenberg magnets, granular super-conducting alloys, anisotropic systems of dipoles, and liquid-vapor transitions. Suitable for advanced undergraduates as well as graduate students in physics, the text assumes some knowledge of statistical mechanics, but is otherwise self-contained.
An understanding of fluctuations and their role is both useful and fundamental to the study of physics. This concise study of random processes offers graduate students and research physicists a survey that encompasses both the relationship of Brownian Movement with statistical mechanics and the problem of irreversible processes. It outlines the basics of the physics involved, without the strictures of mathematical rigor. The three-part treatment starts with a general survey of Brownian Movement, including electrical Brownian Movement and "shot-noise," Part two explores correlation, frequency spectrum, and distribution function, with particular focus on application to Brownian Movement. The final section examines noise in electric currents, including noise in vacuum tubes and a random rectangular current. Frequent footnotes amplify the text, along with an extensive selection of Appendixes.
Quantum fluctuations are present in many domains of physics. In recent years, there has been significant progress in the theoretical and experimental study of these fluctuations, in optics, electronics, atomic physics, metrology, relativity and cosmology. Quantum fluctuations are now observed and measured in experiments and also modified and manipulated using elaborate techniques. These proceedings bring together young scientists who together examine new techniques and the latest research in the field. Among the topics covered are: the methods used to treat quantum fluctuations in optical systems; the recent development of the quantum stochastic methods; the interaction of light with nonlinear materials; the generation of sub-Poisson photon statistics in lasers through the pumping mechanism; the problem of measurement of electromagnetic fields; the problems of instabilities, turbulence and chaos; the analysis of phenomena related to gravity, inertia and cosmology.
Three key aspects of quantum gravity are considered in this book: phenomenology, potential experimental aspects and foundational theory. The phenomenology is the treatment of metric quantum fluctuations as torsional curves that deviate from classical expectations. This leads to possible experimental configurations that may detect such fluctuations. Most of these proposed experiments are quantum optical measurements of subtle quantum gravity effects in the interaction of photons and atoms. The foundational discussions attempt to find an substratum to string theories, which are motivated by the phenomenological treatment. Quantum gravity is not the quantization of general relativity, but is instead the embedding of quantum theory and gravitation into a more fundamental field theoretic framework.
The Universe of Fluctuations: The Architecture of Spacetime and the Universe is a path-breaking work which proposes solutions to the impasse and crisis facing fundamental physics and cosmology. It describes a cosmological model based on fuzzy spacetime that has correctly predicted a dark-energy-driven acceleration of our expanding universe - with a small cosmological constant - at a time when the popular belief was quite the contrary. It describes how the Universe is made up of an underpinning of Planck oscillators in a Quantum Vacuum. This leads to, amongst other things, a characterization of gravitation as being distributional over the entire Universe, thereby providing an answer to a puzzle brought to light by Weinberg years ago and since overlooked. There is also a simple formula for the mass spectrum of all known elementary particles, based on QCD dynamics. Many other interesting ramifications and experimental tests for the future are also discussed. This apart, there is a brief survey of some of the existing theories. The book is accessible to junior and senior researchers in High Energy Physics and Cosmology as well as the serious graduate student in Physics.
Stochastic mechanics is a description of quantum phenomena in classical probabilistic terms. This work contains a detailed account of the kinematics of diffusion processes, including diffusions on curved manifolds which are necessary for the treatment of spin in stochastic mechanics. The dynamical equations of the theory are derived from a variational principle, and interference, the asymptotics of free motion, bound states, statistics, and spin are described in classical terms. In addition to developing the formal mathematical aspects of the theory, the book contains discussion of possible physical causes of quantum fluctuations in terms of an interaction with a background field. The author gives a critical analysis of stochastic mechanics as a candidate for a realistic theory of physical processes, discussing measurement, local causality in the sense of Bell, and the failure of the theory in its present form to satisfy locality.
This book presents a complete encyclopedia of superconducting fluctuations, summarising the last thirty-five years of work in the field. The first part of the book is devoted to an extended discussion of the Ginzburg-Landau phenomenology of fluctuations in its thermodynamical and time-dependent versions and its various applications. The second part deals with microscopic justification of the Ginzburg-Landau approach and presents the diagrammatic theory of fluctuations. The third part is devoted to a less-detailed review of the manifestation of fluctuations in observables: diamagnetism, magnetoconductivity, various tunneling characteristics, thermoelectricity, and NMR relaxation. The final chapters turn to the manifestation of fluctuations in unconventional superconducting systems: nanodrops, nanorings, Berezinsky-Kosterlitz-Thouless state, quantum phase transition between superconductor and insulator, and thermal and quantum fluctuations in weak superconducting systems. The book ends with a brief discussion on theories of high temperature superconductivity, where fluctuations appear as the possible protagonist of this exciting phenomenon.
This is a unique approach to noise theory and its application to physical measurements that will find its place among the graduate course books. In a very systematic way, the foundations are laid and applied in a way that the book will also be useful to those not focusing on optics. Exercises and solutions help students to deepen their knowledge.
The volume that you have before you is the result of a growing realization that fluctuations in nonequilibrium systems playa much more important role than was 1 first believed. It has become clear that in nonequilibrium systems noise plays an active, one might even say a creative, role in processes involving self-organization, pattern formation, and coherence, as well as in biological information processing, energy transduction, and functionality. Now is not the time for a comprehensive summary of these new ideas, and I am certainly not the person to attempt such a thing. Rather, this short introductory essay (and the book as a whole) is an attempt to describe where we are at present and how...
The main purpose of this book is to present, in a comprehensive and progressive way, the appearance of universal limit probability laws in physics, and their connection with the recently developed scaling theory of fluctuations. Arising from the probability theory and renormalization group methods, this novel approach has been proved recently to provide efficient investigative tools for the collective features that occur in any finite system.The mathematical background is self-contained and is formulated in terms which are easy to apply to the physical context. After illustrating the problem of anomalous diffusion, the book reviews recent advances in nuclear and high energy physics, where the limit laws are now recognized as being able to classify different phases of a system undergoing the pseudo-critical behaviour. A new description of the hadronic matter in terms of the fluctuation scaling is appearing as a consequence of this approach.