You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Offers an introduction to large deviations. This book is divided into two parts: theory and applications. It presents basic large deviation theorems for i i d sequences, Markov sequences, and sequences with moderate dependence. It also includes an outline of general definitions and theorems.
Polymer chains that interact with themselves and/or their environment display a range of physical and chemical phenomena. This text focuses on the mathematical description of some of these phenomena, offering a mathematical panorama of polymer chains.
This monograph provides a concise presentation of a mathematical approach to metastability, a wide-spread phenomenon in the dynamics of non-linear systems - physical, chemical, biological or economic - subject to the action of temporal random forces typically referred to as noise, based on potential theory of reversible Markov processes. The authors shed new light on the metastability phenomenon as a sequence of visits of the path of the process to different metastable sets, and focuses on the precise analysis of the respective hitting probabilities and hitting times of these sets. The theory is illustrated with many examples, ranging from finite-state Markov chains, finite-dimensional diffusions and stochastic partial differential equations, via mean-field dynamics with and without disorder, to stochastic spin-flip and particle-hop dynamics and probabilistic cellular automata, unveiling the common universal features of these systems with respect to their metastable behaviour. The monograph will serve both as comprehensive introduction and as reference for graduate students and researchers interested in metastability.
This volume presents a collection of courses introducing the reader to the recent progress with attention being paid to laying solid grounds and developing various basic tools. It presents new results on phase transitions for gradient lattice models.
This volume is a collection of lecture notes for six of the ten courses given in Buzios, Brazil by prominent probabilists at the 2010 Clay Mathematics Institute Summer School, ``Probability and Statistical Physics in Two and More Dimensions'' and at the XIV Brazilian School of Probability. In the past ten to fifteen years, various areas of probability theory related to statistical physics, disordered systems and combinatorics have undergone intensive development. A number of these developments deal with two-dimensional random structures at their critical points, and provide new tools and ways of coping with at least some of the limitations of Conformal Field Theory that had been so successfu...
This book is an introduction to the theory and applications of large deviations, a branch of probability theory that describes the probability of rare events in terms of variational problems. By focusing the theory, in Part A of the book, on random sequences, the author succeeds in conveying the main ideas behind large deviations without a need for technicalities, thus providing a concise and accessible entry to this challenging and captivating subject. The selection of modern applications, described in Part B of the book, offers a good sample of what large deviation theory is able to achieve.
ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.
Presenting important trends in the field of stochastic analysis, this collection of thirteen articles provides an overview of recent developments and new results. Written by leading experts in the field, the articles cover a wide range of topics, ranging from an alternative set-up of rigorous probability to the sampling of conditioned diffusions. Applications in physics and biology are treated, with discussion of Feynman formulas, intermittency of Anderson models and genetic inference. A large number of the articles are topical surveys of probabilistic tools such as chaining techniques, and of research fields within stochastic analysis, including stochastic dynamics and multifractal analysis. Showcasing the diversity of research activities in the field, this book is essential reading for any student or researcher looking for a guide to modern trends in stochastic analysis and neighbouring fields.