You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The textbook provides students with tools they need to analyze complex data using methods from data science, machine learning and artificial intelligence. The authors include both the presentation of methods along with applications using the programming language R, which is the gold standard for analyzing data. The authors cover all three main components of data science: computer science; mathematics and statistics; and domain knowledge. The book presents methods and implementations in R side-by-side, allowing the immediate practical application of the learning concepts. Furthermore, this teaches computational thinking in a natural way. The book includes exercises, case studies, Q&A and examples.
This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.
A collection of highly valuable statistical and computational approaches designed for developing powerful methods to analyze large-scale high-throughput data derived from studies of complex diseases. Such diseases include cancer and cardiovascular disease, and constitute the major health challenges in industrialized countries. They are characterized by the systems properties of gene networks and their interrelations, instead of individual genes, whose malfunctioning manifests in pathological phenotypes, thus making the analysis of the resulting large data sets particularly challenging. This is why novel approaches are needed to tackle this problem efficiently on a systems level. Written by computational biologists and biostatisticians, this book is an invaluable resource for a large number of researchers working on basic but also applied aspects of biomedical data analysis emphasizing the pathway level.
This new title in the well-established "Quantitative Network Biology" series includes innovative and existing methods for analyzing network data in such areas as network biology and chemoinformatics. With its easy-to-follow introduction to the theoretical background and application-oriented chapters, the book demonstrates that R is a powerful language for statistically analyzing networks and for solving such large-scale phenomena as network sampling and bootstrapping. Written by editors and authors with an excellent track record in the field, this is the ultimate reference for R in Network Analysis.
Frontiers in Data Science deals with philosophical and practical results in Data Science. A broad definition of Data Science describes the process of analyzing data to transform data into insights. This also involves asking philosophical, legal and social questions in the context of data generation and analysis. In fact, Big Data also belongs to this universe as it comprises data gathering, data fusion and analysis when it comes to manage big data sets. A major goal of this book is to understand data science as a new scientific discipline rather than the practical aspects of data analysis alone.
The aim of the book is to help students become data scientists. Since this requires a series of courses over a considerable period of time, the book intends to accompany students from the beginning to an advanced understanding of the knowledge and skills that define a modern data scientist. The book presents a comprehensive overview of the mathematical foundations of the programming language R and of its applications to data science.
This book is the first to focus on the application of mathematical networks for analyzing microarray data. This method goes well beyond the standard clustering methods traditionally used. From the contents: * Understanding and Preprocessing Microarray Data * Clustering of Microarray Data * Reconstruction of the Yeast Cell Cycle by Partial Correlations of Higher Order * Bilayer Verification Algorithm * Probabilistic Boolean Networks as Models for Gene Regulation * Estimating Transcriptional Regulatory Networks by a Bayesian Network * Analysis of Therapeutic Compound Effects * Statistical Methods for Inference of Genetic Networks and Regulatory Modules * Identification of Genetic Networks by Structural Equations * Predicting Functional Modules Using Microarray and Protein Interaction Data * Integrating Results from Literature Mining and Microarray Experiments to Infer Gene Networks The book is for both, scientists using the technique as well as those developing new analysis techniques.
This comprehensive introduction to computational network theory as a branch of network theory builds on the understanding that such networks are a tool to derive or verify hypotheses by applying computational techniques to large scale network data. The highly experienced team of editors and high-profile authors from around the world present and explain a number of methods that are representative of computational network theory, derived from graph theory, as well as computational and statistical techniques. With its coherent structure and homogenous style, this reference is equally suitable for courses on computational networks.
This handbook and ready reference presents a combination of statistical, information-theoretic, and data analysis methods to meet the challenge of designing empirical models involving molecular descriptors within bioinformatics. The topics range from investigating information processing in chemical and biological networks to studying statistical and information-theoretic techniques for analyzing chemical structures to employing data analysis and machine learning techniques for QSAR/QSPR. The high-profile international author and editor team ensures excellent coverage of the topic, making this a must-have for everyone working in chemoinformatics and structure-oriented drug design.
Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science, machine learning, artificial intelligence, computational and systems biology, cognitive science, computational linguistics, and mathematical chemistry. It may also be used as a supplementary textbook in graduate-level seminars on structural graph analysis, complex networks, or network-based machine learning methods.