You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Evolving from graduate lectures given in London and Oxford, this introduction to twistor theory and modern geometrical approaches to space-time structure will provide graduate students with the basics of twistor theory, presupposing some knowledge of special relativity and differenttial geometry.
Finite reductive groups and their representations lie at the heart of group theory. This volume treats linear representations of finite reductive groups and their modular aspects together with Hecke algebras, complex reflection groups, quantum groups, arithmetic groups, Lie groups, symmetric groups and general finite groups.
This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.
The aim of this book is to provide an introduction to combinatorial group theory. Any reader who has completed first courses in linear algebra, group theory and ring theory will find this book accessible. The emphasis is on computational techniques but rigorous proofs of all theorems are supplied.This new edition has been revised throughout, including new exercises and an additional chapter on proving that certain groups are infinite.
The only introduction to wavelets that doesn't avoid the tough mathematical questions.
The papers in these proceedings of the 1986 Arcata Summer Institute bear witness to the extraordinarily vital and intense research in the representation theory of finite groups. The confluence of diverse mathematical disciplines has brought forth work of great scope and depth. Particularly striking is the influence of algebraic geometry and cohomology theory in the modular representation theory and the character theory of reductive groups over finite fields, and in the general modular representation theory of finite groups. The continuing developments in block theory and the general character theory of finite groups is noteworthy. The expository and research aspects of the Summer Institute are well represented by these papers.
Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.
An elegant introduction to symplectic geometry and Lagrangian foliations, including a systematic study of bi-Lagrangian geometry.
On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating co...
Presents those methods of modern set theory most applicable to other areas of pure mathematics.