You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents students with problems and exercises designed to illuminate the properties of functions and graphs. The 1st part of the book employs simple functions to analyze the fundamental methods of constructing graphs. The 2nd half deals with more complicated and refined questions concerning linear functions, quadratic trinomials, linear fractional functions, power functions, and rational functions. 1969 edition.
Key topics in the theory of real analytic functions are covered in this text,and are rather difficult to pry out of the mathematics literature.; This expanded and updated 2nd ed. will be published out of Boston in Birkhäuser Adavaned Texts series.; Many historical remarks, examples, references and an excellent index should encourage the reader study this valuable and exciting theory.; Superior advanced textbook or monograph for a graduate course or seminars on real analytic functions.; New to the second edition a revised and comprehensive treatment of the Faá de Bruno formula, topologies on the space of real analytic functions,; alternative characterizations of real analytic functions, surjectivity of partial differential operators, And the Weierstrass preparation theorem.
This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.
An extensive summary of mathematical functions that occur in physical and engineering problems
A rigorous and self-contained exposition of aggregation functions and their properties.
None
An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.
The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ("Sources" [9]). We shall restrict ourselves to postwar, i. e., after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I.A.S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in hi...
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.