You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the ...
The mathematical works of Lars Ahlfors and Lipman Bers are fundamental and lasting. They have influenced and altered the development of twentieth century mathematics. The personalities of these two scientists helped create a mathematical family and have had a permanent positive effect on a whole generation of mathematicians. Their mathematical heritage continues to lead succeeding generations. In the fall of 1994, one year after Bers' death, some members of this family decided to inaugurate a series of conferences, "The Bers Colloquium", to be held every three years. The theme was to be a topic in the Ahlfors-Bers mathematical tradition, broadly interpreted. Ahlfors died a year after the fir...
This is one of the first monographs to deal with the metric theory of spatial mappings and incorporates results in the theory of quasi-conformal, quasi-isometric and other mappings. The main subject is the study of the stability problem in Liouville's theorem on conformal mappings in space, which is representative of a number of problems on stability for transformation classes. To enable this investigation a wide range of mathematical tools has been developed which incorporate the calculus of variation, estimates for differential operators like Korn inequalities, properties of functions with bounded mean oscillation, etc. Results obtained by others researching similar topics are mentioned, and a survey is given of publications treating relevant questions or involving the technique proposed. This volume will be of great value to graduate students and researchers interested in geometric function theory.
This monograph is the first one to systematically present a series of local and global estimates and inequalities for differential forms, in particular the ones that satisfy the A-harmonic equations. The presentation focuses on the Hardy-Littlewood, Poincare, Cacciooli, imbedded and reverse Holder inequalities. Integral estimates for operators, such as homotopy operator, the Laplace-Beltrami operator, and the gradient operator are discussed next. Additionally, some related topics such as BMO inequalities, Lipschitz classes, Orlicz spaces and inequalities in Carnot groups are discussed in the concluding chapter. An abundance of bibliographical references and historical material supplement the text throughout. This rigorous presentation requires a familiarity with topics such as differential forms, topology and Sobolev space theory. It will serve as an invaluable reference for researchers, instructors and graduate students in analysis and partial differential equations and could be used as additional material for specific courses in these fields.
The papers in this volume cover a wide variety of topics in the geometric theory of functions of one and several complex variables, including univalent functions, conformal and quasiconformal mappings, minimal surfaces, and dynamics in infinite-dimensional spaces. In addition, there are several articles dealing with various aspects of approximation theory and partial differential equations. Taken together, the articles collected here provide the reader with a panorama of activity in complex analysis, drawn by a number of leading figures in the field.
The goal of this book is to investigate further the interdisciplinary interaction between Mathematical Analysis and Topology. It provides an attempt to study various approaches in the topological applications and influence to Function Theory, Calculus of Variations, Functional Analysis and Approximation Theory. The volume is dedicated to the memory of S Stoilow.
Iwaniec (math, Syracuse U.) and Martin (math, U. of Auckland) explain recent developments in the geometry of mappings, related to functions or deformations between subsets of the Euclidean n-space Rn and more generally between manifolds or other geometric objects. Material on mappings intersects with aspects of differential geometry, topology, partial differential equations, harmonic analysis, and the calculus of variations. Chapters cover topics such as conformal mappings, stability of the Mobius group, Sobolev theory and function spaces, the Liouville theorem, even dimensions, Picard and Montel theorems in space, uniformly quasiregular mappings, and quasiconformal groups. c. Book News Inc.
This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order diverge...
This book is devoted to the Beltrami equations that play a significant role in Geometry, Analysis and Physics and, in particular, in the study of quasiconformal mappings and their generalizations, Riemann surfaces, Kleinian groups, Teichmuller spaces, Clifford analysis, meromorphic functions, low dimensional topology, holomorphic motions, complex dynamics, potential theory, electrostatics, magnetostatics, hydrodynamics and magneto-hydrodynamics. The purpose of this book is to present the recent developments in the theory of Beltrami equations; especially those concerning degenerate and alternating Beltrami equations. The authors study a wide circle of problems like convergence, existence, un...
The purpose of this CIME summer school was to present current areas of research arising both in the theoretical and applied setting that involve fully nonlinear partial different equations. The equations presented in the school stem from the fields of Conformal Mapping Theory, Differential Geometry, Optics, and Geometric Theory of Several Complex Variables. The school consisted of four courses: Extremal problems for quasiconformal mappings in space by Luca Capogna, Fully nonlinear equations in geometry by Pengfei Guan, Monge-Ampere type equations and geometric optics by Cristian E. Gutiérrez, and On the Levi Monge Ampere equation by Annamaria Montanari.