You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This fifth edition has been fully updated to cover the many advances made in CAGD and curve and surface theory since 1997, when the fourth edition appeared. Material has been restructured into theory and applications chapters. The theory material has been streamlined using the blossoming approach; the applications material includes least squares techniques in addition to the traditional interpolation methods. In all other respects, it is, thankfully, the same. This means you get the informal, friendly style and unique approach that has made Curves and Surfaces for CAGD: A Practical Guide a true classic. The book's unified treatment of all significant methods of curve and surface design is he...
Putting the G into CAGD, the authors provide a much-needed practical and basic introduction to computer-aided geometric design. This book will help readers understand and use the elements of computer-aided geometric design, curves and surfaces, without the mathematical baggage that is necessary only for more advanced work. Though only minimal backg
This book provides a comprehensive coverage of the fields Geometric Modeling, Computer-Aided Design, and Scientific Visualization, or Computer-Aided Geometric Design. Leading international experts have contributed, thus creating a one-of-a-kind collection of authoritative articles. There are chapters outlining basic theory in tutorial style, as well as application-oriented articles. Aspects which are covered include: Historical outline Curve and surface methods Scientific Visualization Implicit methods Reverse engineering. This book is meant to be a reference text for researchers in the field as well as an introduction to graduate students wishing to get some exposure to this subject.
A leading expert in CAGD, Gerald Farin covers the representation, manipulation, and evaluation of geometric shapes in this the Third Edition of Curves and Surfaces for Computer Aided Geometric Design. The book offers an introduction to the field that emphasizes Bernstein-Bezier methods and presents subjects in an informal, readable style, making this an ideal text for an introductory course at the advanced undergraduate or graduate level. The Third Edition includes a new chapter on Topology, offers new exercises and sections within most chapters, combines the material on Geometric Continuity into one chapter, and updates existing materials and references. Implementation techniques are addressed for practitioners by the inclusion of new C programs for many of the fundamental algorithms. The C programs are available on a disk included with the text. System Requirements: IBM PC or compatibles, DOS version 2.0 or higher. - Covers representation, manipulation, and evaluation of geometric shapes - Emphasizes Bernstein-Bezier methods - Written in an informal, easy-to-read style
This text includes papers covering topics in geometry processing applications, such as surface-surface intersections and offset surfaces. Present methods fundamental to geometric modelling are highlighted.
None
The Geometry Toolbox takes a novel and particularly visual approach to teaching the basic concepts of two- and three-dimensional geometry. It explains the geometry essential for today's computer modeling, computer graphics, and animation systems. While the basic theory is completely covered, the emphasis of the book is not on abstract proofs but rather on examples and algorithms. The Geometry Toolbox is the ideal text for professionals who want to get acquainted with the latest geometric tools. The chapters on basic curves and surfaces form an ideal stepping stone into the world of graphics and modeling. It is also a unique textbook for a modern introduction to linear algebra and matrix theory.
Computer disk contains: "data sets, as well as all of the C routines found in the book."
This monograph is devoted to computational morphology, particularly to the construction of a two-dimensional or a three-dimensional closed object boundary through a set of points in arbitrary position. By applying techniques from computational geometry and CAGD, new results are developed in four stages of the construction process: (a) the gamma-neighborhood graph for describing the structure of a set of points; (b) an algorithm for constructing a polygonal or polyhedral boundary (based on (a)); (c) the flintstone scheme as a hierarchy for polygonal and polyhedral approximation and localization; (d) and a Bezier-triangle based scheme for the construction of a smooth piecewise cubic boundary.
With considerations such as complex-dimensional geometries and nonlinearity, the computational solution of partial differential systems has become so involved that it is important to automate decisions that have been normally left to the individual. This book covers such decisions: 1) mesh generation with links to the software generating the domain geometry, 2) solution accuracy and reliability with mesh selection linked to solution generation. This book is suited for mathematicians, computer scientists and engineers and is intended to encourage interdisciplinary interaction between the diverse groups.