Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Generalized Linear Models
  • Language: en
  • Pages: 521

Generalized Linear Models

Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly exte...

Introduction to Linear Regression Analysis
  • Language: en
  • Pages: 679

Introduction to Linear Regression Analysis

Praise for the Fourth Edition "As with previous editions, the authors have produced a leading textbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Fol...

Solutions Manual to accompany Introduction to Linear Regression Analysis
  • Language: en
  • Pages: 112

Solutions Manual to accompany Introduction to Linear Regression Analysis

As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.

Statistical Methods for Engineers
  • Language: en
  • Pages: 618

Statistical Methods for Engineers

  • Type: Book
  • -
  • Published: 2011
  • -
  • Publisher: Unknown

STATISTICAL METHODS FOR ENGINEERS, 3e, International Edition offers a balanced, streamlined one-semester introduction to Engineering Statistics that emphasizes the statistical tools most needed by practicing engineers.

Statistical Methods for Engineers
  • Language: en
  • Pages: 181

Statistical Methods for Engineers

Contains fully worked solutions to all odd-numbered exercises in the text.

Statistical Process Monitoring and Optimization
  • Language: en
  • Pages: 510

Statistical Process Monitoring and Optimization

  • Type: Book
  • -
  • Published: 1999-11-24
  • -
  • Publisher: CRC Press

Demonstrates ways to track industrial processes and performance, integrating related areas such as engineering process control, statistical reasoning in TQM, robust parameter design, control charts, multivariate process monitoring, capability indices, experimental design, empirical model building, and process optimization. The book covers a range o

Design and Analysis of Experiments, Volume 3
  • Language: en
  • Pages: 598

Design and Analysis of Experiments, Volume 3

Provides timely applications, modifications, and extensions of experimental designs for a variety of disciplines Design and Analysis of Experiments, Volume 3: Special Designs and Applications continues building upon the philosophical foundations of experimental design by providing important, modern applications of experimental design to the many fields that utilize them. The book also presents optimal and efficient designs for practice and covers key topics in current statistical research. Featuring contributions from leading researchers and academics, the book demonstrates how the presented concepts are used across various fields from genetics and medicinal and pharmaceutical research to ma...

Theory of Ridge Regression Estimation with Applications
  • Language: en
  • Pages: 384

Theory of Ridge Regression Estimation with Applications

A guide to the systematic analytical results for ridge, LASSO, preliminary test, and Stein-type estimators with applications Theory of Ridge Regression Estimation with Applications offers a comprehensive guide to the theory and methods of estimation. Ridge regression and LASSO are at the center of all penalty estimators in a range of standard models that are used in many applied statistical analyses. Written by noted experts in the field, the book contains a thorough introduction to penalty and shrinkage estimation and explores the role that ridge, LASSO, and logistic regression play in the computer intensive area of neural network and big data analysis. Designed to be accessible, the book p...

Robust Statistics
  • Language: en
  • Pages: 466

Robust Statistics

A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applicati...