Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Discrete–Time Stochastic Control and Dynamic Potential Games
  • Language: en
  • Pages: 81

Discrete–Time Stochastic Control and Dynamic Potential Games

​There are several techniques to study noncooperative dynamic games, such as dynamic programming and the maximum principle (also called the Lagrange method). It turns out, however, that one way to characterize dynamic potential games requires to analyze inverse optimal control problems, and it is here where the Euler equation approach comes in because it is particularly well–suited to solve inverse problems. Despite the importance of dynamic potential games, there is no systematic study about them. This monograph is the first attempt to provide a systematic, self–contained presentation of stochastic dynamic potential games.

Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations
  • Language: en
  • Pages: 141

Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations

  • Type: Book
  • -
  • Published: 2014-12-23
  • -
  • Publisher: Springer

In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

Sub-Riemannian Geometry and Optimal Transport
  • Language: en
  • Pages: 146

Sub-Riemannian Geometry and Optimal Transport

The book provides an introduction to sub-Riemannian geometry and optimal transport and presents some of the recent progress in these two fields. The text is completely self-contained: the linear discussion, containing all the proofs of the stated results, leads the reader step by step from the notion of distribution at the very beginning to the existence of optimal transport maps for Lipschitz sub-Riemannian structure. The combination of geometry presented from an analytic point of view and of optimal transport, makes the book interesting for a very large community. This set of notes grew from a series of lectures given by the author during a CIMPA school in Beirut, Lebanon.

General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions
  • Language: en
  • Pages: 148

General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions

  • Type: Book
  • -
  • Published: 2014-06-02
  • -
  • Publisher: Springer

The classical Pontryagin maximum principle (addressed to deterministic finite dimensional control systems) is one of the three milestones in modern control theory. The corresponding theory is by now well-developed in the deterministic infinite dimensional setting and for the stochastic differential equations. However, very little is known about the same problem but for controlled stochastic (infinite dimensional) evolution equations when the diffusion term contains the control variables and the control domains are allowed to be non-convex. Indeed, it is one of the longstanding unsolved problems in stochastic control theory to establish the Pontryagin type maximum principle for this kind of general control systems: this book aims to give a solution to this problem. This book will be useful for both beginners and experts who are interested in optimal control theory for stochastic evolution equations.

Geodesic Convexity in Graphs
  • Language: en
  • Pages: 117

Geodesic Convexity in Graphs

​​​​​​​​Geodesic Convexity in Graphs is devoted to the study of the geodesic convexity on finite, simple, connected graphs. The first chapter includes the main definitions and results on graph theory, metric graph theory and graph path convexities. The following chapters focus exclusively on the geodesic convexity, including motivation and background, specific definitions, discussion and examples, results, proofs, exercises and open problems. The main and most st​udied parameters involving geodesic convexity in graphs are both the geodetic and the hull number which are defined as the cardinality of minimum geodetic and hull set, respectively. This text reviews various resul...

p-Laplace Equation in the Heisenberg Group
  • Language: en
  • Pages: 96

p-Laplace Equation in the Heisenberg Group

  • Type: Book
  • -
  • Published: 2015-12-28
  • -
  • Publisher: Springer

This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.

Spectral Mapping Theorems
  • Language: en
  • Pages: 132

Spectral Mapping Theorems

  • Type: Book
  • -
  • Published: 2014-04-29
  • -
  • Publisher: Springer

Written by an author who was at the forefront of developments in multi-variable spectral theory during the seventies and the eighties, this guide sets out to describe in detail the spectral mapping theorem in one, several and many variables. The basic algebraic systems – semigroups, rings and linear algebras – are summarised, and then topological-algebraic systems, including Banach algebras, to set up the basic language of algebra and analysis. Spectral Mapping Theorems is written in an easy-to-read and engaging manner and will be useful for both the beginner and expert. It will be of great importance to researchers and postgraduates studying spectral theory.

Graphs on Surfaces
  • Language: en
  • Pages: 149

Graphs on Surfaces

Graphs on Surfaces: Dualities, Polynomials, and Knots offers an accessible and comprehensive treatment of recent developments on generalized duals of graphs on surfaces, and their applications. The authors illustrate the interdependency between duality, medial graphs and knots; how this interdependency is reflected in algebraic invariants of graphs and knots; and how it can be exploited to solve problems in graph and knot theory. Taking a constructive approach, the authors emphasize how generalized duals and related ideas arise by localizing classical constructions, such as geometric duals and Tait graphs, and then removing artificial restrictions in these constructions to obtain full extens...

A Kaleidoscopic View of Graph Colorings
  • Language: en
  • Pages: 160

A Kaleidoscopic View of Graph Colorings

  • Type: Book
  • -
  • Published: 2016-03-30
  • -
  • Publisher: Springer

This book describes kaleidoscopic topics that have developed in the area of graph colorings. Unifying current material on graph coloring, this book describes current information on vertex and edge colorings in graph theory, including harmonious colorings, majestic colorings, kaleidoscopic colorings and binomial colorings. Recently there have been a number of breakthroughs in vertex colorings that give rise to other colorings in a graph, such as graceful labelings of graphs that have been reconsidered under the language of colorings. The topics presented in this book include sample detailed proofs and illustrations, which depicts elements that are often overlooked. This book is ideal for graduate students and researchers in graph theory, as it covers a broad range of topics and makes connections between recent developments and well-known areas in graph theory.

Non-Archimedean Operator Theory
  • Language: en
  • Pages: 163

Non-Archimedean Operator Theory

  • Type: Book
  • -
  • Published: 2016-04-07
  • -
  • Publisher: Springer

This book focuses on the theory of linear operators on non-Archimedean Banach spaces. The topics treated in this book range from a basic introduction to non-Archimedean valued fields, free non-Archimedean Banach spaces, bounded and unbounded linear operators in the non-Archimedean setting, to the spectral theory for some classes of linear operators. The theory of Fredholm operators is emphasized and used as an important tool in the study of the spectral theory of non-Archimedean operators. Explicit descriptions of the spectra of some operators are worked out. Moreover, detailed background materials on non-Archimedean valued fields and free non-Archimedean Banach spaces are included for completeness and for reference. The readership of the book is aimed toward graduate and postgraduate students, mathematicians, and non-mathematicians such as physicists and engineers who are interested in non-Archimedean functional analysis. Further, it can be used as an introduction to the study of non-Archimedean operator theory in general and to the study of spectral theory in other special cases.