You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
G. H. Hardy ranks among the greatest twentieth-century mathematicians. This book introduces this extraordinary individual and his writing.
G. H. Hardy was one of this century's finest mathematical thinkers, renowned among his contemporaries as a 'real mathematician ... the purest of the pure'. He was also, as C. P. Snow recounts in his Foreword, 'unorthodox, eccentric, radical, ready to talk about anything'. This 'apology', written in 1940 as his mathematical powers were declining, offers a brilliant and engaging account of mathematics as very much more than a science; when it was first published, Graham Greene hailed it alongside Henry James's notebooks as 'the best account of what it was like to be a creative artist'. C. P. Snow's Foreword gives sympathetic and witty insights into Hardy's life, with its rich store of anecdotes concerning his collaboration with the brilliant Indian mathematician Ramanujan, his aphorisms and idiosyncrasies, and his passion for cricket. This is a unique account of the fascination of mathematics and of one of its most compelling exponents in modern times.
Another excellent book long out of print but much in demand. This book is pulled together by Ramanujan's primary mentor, G. H. Hardy, who was the first to recognize the amazing nature of Ramanujan's ideas. Another exceptional classic from the Chelsea list.
本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。
(This ebook contains a limited number of illustrations.) The ebook of the critically-acclaimed popular science book by a writer who is fast becoming a celebrity mathematician.
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians.
Review of the original edition: This is an inspiring textbook for students who know the theory of functions of real and complex variables and wish further knowledge of mathematical analysis. There are no problems displayed and labelled “problems,” but one who follows all of the arguments and calculations of the text will find use for his ingenuity and pencil. The book deals with interesting and important problems and topics in many fields of mathematical analysis, to an extent very much greater than that indicated by the titles of the chapters. It is, of course, an indispensable handbook for those interested in divergent series. It assembles a considerable part of the theory of divergent series, which has previously existed only in periodical literature. Hardy has greatly simplified and improved many theories, theorems and proofs. In addition, numerous acknowledgements show that the book incorporates many previously unpublished results and improvements of old results, communicated to Hardy by his colleagues and by others interested in the book. —Mathematical Reviews
Originally published in 1910 as number twelve in the Cambridge Tracts in Mathematics and Mathematical Physics series, this book provides an up-to-date version of Du Bois-Reymond's Infinitärcalcül by the celebrated English mathematician G. H. Hardy. This tract will be of value to anyone with an interest in the history of mathematics or the theory of functions.
A biography of the Indian mathematician Srinivasa Ramanujan. The book gives a detailed account of his upbringing in India, his mathematical achievements, and his mathematical collaboration with English mathematician G. H. Hardy. The book also reviews the life of Hardy and the academic culture of Cambridge University during the early twentieth century.
There are few textbooks of mathematics as well-known as Hardy's Pure Mathematics. Since its publication in 1908, this classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit. Celebrating 100 years in print with Cambridge, this edition includes a Foreword by T. W. Körner, describing the huge influence the book has had on the teaching and development of mathematics worldwide. Hardy's presentation of mathematical analysis is as valid today as when first written: students will find that his economical and energetic style of presentation is one that modern authors rarely come close to.