You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a fully updated and revised second edition of a highly successful text in which a new concept of knowledge mining, based on explication and transfer of interventional knowledge of experts, has been implemented. The dedicated training program that is set out will serve the needs of all interventional operators, whether cardiologists, vascular surgeons, vascular specialists, or radiologists, enabling them to achieve a consistent expert level across the entire broad spectrum of catheter-based interventions. Operator skills – and in particular decision-making and strategic skills – are the most critical factors for the outcome of catheter-based cardiovascular interventions. Currently, such skills are commonly developed by the empirical trial and error method only. The explicit teaching, training, and learning approach adopted in this book permits the rapid transfer of interventional knowledge and enables individual operators to negotiate steep learning curves and acquire complex skills in a highly efficient manner. It will thereby offer invaluable assistance in meeting successfully the challenges of modern cardiovascular care.
OCT is rapidly being adopted in cardiology practice. However, gap exists between the speed of technology development and the knowledge of cardiologists. Many cardiologists are not familiar with image interpretation and don’t have enough background/knowledge to use the information in clinical practice. This book will be designed for busy interventional cardiologists to become quickly familiar with this emerging technology so that they can take advantage of its power improve patient care and outcome.
This Special Issue of Membranes focuses on several new aspects of fluid transport in glassy polymers, with application in relevant membrane separations such as gas purification, VOC removal and CO2 capture. In particular, the focus lies on novel experimental techniques, and detailed characterization of specific phenomena like polar and multicomponent interactions during transport. The properties of novel materials, such as mixed matrix membranes based on glassy polymers and different selective fillers, are also presented. A critical review of existing modeling approaches to describe the sorption and transport in glassy polymers suitable for membrane separations is provided, including both macroscopic and atomistic models, and relying both on the standard solution–diffusion process and on the facilitated transport mechanism.
This unique book, drawing on the author’s lifetime experience, critically evaluates the extensive literature on the field of Metal-Catalysed Reactions of Hydrocarbons. Emphasis is placed on reaction mechanisms involving hydrogenation, hydrogenolysis, skeletal and positional isomerisation, and exchange reactions. The motivation for fundamental research in heterogeneous catalysis is to identify the physicochemical characteristics of active centres for the reaction being studied, to learn how these may be modified or manipulated to improve the desired behavior of the catalyst, and to recognize and control those aspects of the catalyst's structure that limit its overall performance. By restricting the subject of the book to hydrocarbons, Bond has progressively developed the subject matter to include areas of importance both to researchers and to those working in the industry.
This book provides an up-to-date overview of the Mössbauer effect in physics, chemistry, electrochemistry, catalysis, biology, medicine, geology, mineralogy, archaeology and materials science. Coverage details the most recent developments of the technique especially in the fields of nanoparticles, thin films, surfaces, interfaces, magnetism, experimentation, theory, medical and industrial applications and Mars exploration.
Established in 1960, Advances in Heterocyclic Chemistry is the definitive serial in the area-one of great importance to organic chemists, polymer chemists, and many biological scientists. Written by established authorities in the field, the comprehensive reviews combine descriptive chemistry and mechanistic insight and yield an understanding of how the chemistry drives the properties.
Includes section, "Recent book acquisitions" (varies: Recent United States publications) formerly published separately by the U.S. Army Medical Library.
Biomaterials science has advanced dramatically in the past 50 years with the increased cooperation between engineers chemists and biologists. Whilst previously biomaterials may have been erroneously thought to encompass dressing materials or implant structures designed to replace damaged or diseased tissue, the range of clinical applications of these materials is immense. Truly "Smart" biomaterials, which have the ability to recognise, respond to and even record their environment, now exist. The presentations in this volume reflect the true inter-disciplinary nature of biomaterials science; with contributions from polymer chemists, engineers, biologists and clinicians. The presentations show the potential of these collaborations and describe how advanced biomaterials have and are being employed not only in theraputic applications, but also increasingly in diagnosis and treatment in medical science.