You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Organ regeneration, once unknown in adult mammals, is at the threshold of maturity as a clinical method for restoration of organ function in humans. Several laboratories around the world are engaged in the development of new tools such as stem cells and biologically active scaffolds. Others are taking fresh looks at well-known clinical problems of replacement of a large variety of organs: Bone, skin, the spinal cord, peripheral nerves, articular cartilage, the conjunctiva, heart valves and urologic organs. Still other investigators are working out the mechanistic pathways of regeneration and the theoretical implications of growing back organs in an adult. The time has come to present a collection of these efforts from leading practitioners in the field of organ regeneration.
The collection of papers forming this volume is intended to provide a deeper study of some mathematical and physical subjects which are at the core of recent developments in the natural and living sciences. The book explores some far-reaching interfaces where mathematics, theoretical physics, and natural sciences seem to interact profoundly. The main goal is to show that an accomplished movement of geometrisation has enabled the discovery of a great variety of amazing structures and behaviors in physical reality and in living matter. The diverse group of expert mathematicians, physicists and natural scientists present numerous new results and original ideas, methods and techniques. Both academic and interdisciplinary, the book investigates a number of important connections between mathematics, theoretical physics and natural sciences including biology.
The concept is fundamental in statistics and tailors to the emergence of collective behaviours. Communication then asks for uncertainty considerations - noise, indeterminacy or approximation - and its wider impact on the couple perception-action. Clustering being all about uncertainty handling, data set representation appears not to be the only solution: Introducing hierarchies with adapted metrics, a priori pre-improving the data resolution are other methods in need of evaluation. The technology together with increasing semantics enables to involve synthetic data as simulation results for the multiplication of sources. Part B plays with another couple important for complex systems: state vs. transition. State-first descriptions would characterize physics, while transition-first would fit biology. That could stem from life producing dynamical systems in essence.
This textbook describes the basic principles of induced organ regeneration in skin and peripheral nerves and extends the original successful paradigm to other organs. A set of trans-organ rules is established and its use in regeneration of several organs is illustrated from the works of several independent investigators who worked with a variety of organs, such as the lung, the bladder, and the Achilles tendon, using collagen-based scaffolds somewhat similar to the original one. These critical medical treatments fill the clinical need that is not met by organ transplantation. New to this second edition: New information extending the paradigm of tissue regeneration from organ regeneration in skin and peripheral nerves to other organs Guidelines, known as trans-organ rules, are described for the first time for extending this unique medical treatment to organs of several medical specialties The work serves as a comprehensive text and reference for students and practitioners of tissue engineering
This book provides a critical reflection on automated science and addresses the question whether the computational tools we developed in last decades are changing the way we humans do science. More concretely: Can machines replace scientists in crucial aspects of scientific practice? The contributors to this book re-think and refine some of the main concepts by which science is understood, drawing a fascinating picture of the developments we expect over the next decades of human-machine co-evolution. The volume covers examples from various fields and areas, such as molecular biology, climate modeling, clinical medicine, and artificial intelligence. The explosion of technological tools and drivers for scientific research calls for a renewed understanding of the human character of science. This book aims precisely to contribute to such a renewed understanding of science.
And starting from there, it can induce an explicit understanding of certain fundamental features of the new scientific thinking. A formalized epistemology should not be mistaken for a crossdisciplinary or a multidisciplinary project. The latter projects are designed to offer to nonspecialists access to information, to results obtained inside specialized disciplines, as well as a certain understanding of these results; whereas a formalized epistemology should equip anyone with a framework for conceptualizing himself in whatever domain and direction he or she might choose. A formalized epistemology should not be mistaken either for an approach belonging to the modern cognitive sciences
The last decade has generated a multitude of studies using in vitro model systems to explore growth and differentiation of the nervous system. Although the findings have been exciting and have revealed unique properties of neural cells, considerable concern continues to be expressed regarding the significance of in vitro findings in terms of their applicability to in vivo biological events. To examine this issue further, a group of scientists pre sented and discussed their findings at a conference sponsored by the Institute of Developmental Neuroscience and Aging held in Crete, Greece, 26-29 May 1985. The conference was cosponsored by the University of Crete and was generously supported by t...
This book contains the proceedings of the Seventh National Conference of the Italian Systems Society. The title, Systemics of Incompleteness and Quasi-Systems, aims to underline the need for Systemics and Systems Science to deal with the concepts of incompleteness and quasiness. Classical models of Systemics are intended to represent comprehensive aspects of phenomena and processes. They consider the phenomena in their temporal and spatial completeness. In these cases, possible incompleteness in the modelling is assumed to have a provisional or practical nature, which is still under study, and because there is no theoretical reason why the modelling cannot be complete. In principle, this is ...
Along with the traditional optical window, many new windows have been opened on galaxies in the last two decades, made possible by new developments in groundbased detectors and by space missions that allow detection of photons that are otherwise absorbed by the Earth's atmosphere. Galaxies can now be observed in the radio, submillimeter, IR, optical, UV, X- and gamma-ray bands, each window allowing us to learn more about galactic components and properties. These developments have also imposed the view that a deeper understanding of even normal galaxies requires a panchromatic approach, making use of all of the data gathered from the different windows to synthesize a comprehensive physical im...
This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.