You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
This introduction to aikido aims to train the reader to sense theirpponent's intentions and turn his movements to your own advantage.
From the June 1998 Summer School come 20 contributions that explore algebraic cycles (a subfield of algebraic geometry) from a variety of perspectives. The papers have been organized into sections on cohomological methods, Chow groups and motives, and arithmetic methods. Some specific topics include logarithmic Hodge structures and classifying spaces; Bloch's conjecture and the K-theory of projective surfaces; and torsion zero-cycles and the Abel-Jacobi map over the real numbers.
This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are ...
This book represents the current (1985) state of knowledge about Zariski surfaces and related topics in differential equations in characteristic p > 0. It is aimed at research mathematicians and graduate and advanced undergraduate students of mathematics and computer science.
Simple enough for detailed study, rich enough to show interesting behavior, K3 surfaces illuminate core methods in algebraic geometry.
The sequel to "Dynamic Aikido", this book expands on the fundamentalrinciples in finer detail. It covers the basic postures and movements,lacing special emphasis on perfecting the key techniques for achievingaxumum effect with minimum effort. It is aimed at beginners and advancedtudents.
None