Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Fundamentals of Computerized Tomography
  • Language: en
  • Pages: 302

Fundamentals of Computerized Tomography

This revised and updated second edition – now with two new chapters - is the only book to give a comprehensive overview of computer algorithms for image reconstruction. It covers the fundamentals of computerized tomography, including all the computational and mathematical procedures underlying data collection, image reconstruction and image display. Among the new topics covered are: spiral CT, fully 3D positron emission tomography, the linogram mode of backprojection, and state of the art 3D imaging results. It also includes two new chapters on comparative statistical evaluation of the 2D reconstruction algorithms and alternative approaches to image reconstruction.

Image Reconstruction from Projections
  • Language: en
  • Pages: 352

Image Reconstruction from Projections

  • Type: Book
  • -
  • Published: 1980
  • -
  • Publisher: Unknown

Image reconstruction from projections. Probability and random variables. An overview of the process of CT. Physical problems associated with data collection in CT. Computer simulation of data collection in CT. Data collection and reconstruction of the head phantom under various assumptions. Basic concepts of reconstruction algorithms. Backprojection. Convolution method for parallel beams. Other transform methods for parallel beams. Convolution methods for divergent beams. The algebraic reconstruction techniques. Quadratic optimization methods. Noniterative series expansion methods. Truly three-dimensional reconstruction. Three-dimensional display of organs. Mathematical background.

Discrete Tomography
  • Language: en
  • Pages: 491

Discrete Tomography

Goals of the Book Overthelast thirty yearsthere has been arevolutionindiagnostic radiology as a result oftheemergenceofcomputerized tomography (CT), which is the process of obtaining the density distribution within the human body from multiple x-ray projections. Since an enormous variety of possible density values may occur in the body, a large number of projections are necessary to ensure the accurate reconstruction oftheir distribution. There are other situations in which we desire to reconstruct an object from its projections, but in which we know that the object to be recon structed has only a small number of possible values. For example, a large fraction of objects scanned in industrial...

Introduction to the Mathematics of Medical Imaging
  • Language: en
  • Pages: 782

Introduction to the Mathematics of Medical Imaging

  • Type: Book
  • -
  • Published: 2008-01-01
  • -
  • Publisher: SIAM

At the heart of every medical imaging technology is a sophisticated mathematical model of the measurement process and an algorithm to reconstruct an image from the measured data. This book provides a firm foundation in the mathematical tools used to model the measurements and derive the reconstruction algorithms used in most imaging modalities in current use. In the process, it also covers many important analytic concepts and techniques used in Fourier analysis, integral equations, sampling theory, and noise analysis.This text uses X-ray computed tomography as a "pedagogical machine" to illustrate important ideas and incorporates extensive discussions of background material making the more a...

3D Imaging in Medicine, Second Edition
  • Language: en
  • Pages: 394

3D Imaging in Medicine, Second Edition

  • Type: Book
  • -
  • Published: 1999-09-28
  • -
  • Publisher: CRC Press

The ability to visualize, non-invasively, human internal organs in their true from and shape has intrigued mankind for centuries. While the recent inventions of medical imaging modalities such as computerized tomography and magnetic resonance imaging have revolutionized radiology, the development of three-dimensional (3D) imaging has brought us closer to the age-old quest of non-invasive visualization. The ability to not only visualize but to manipulate and analyze 3D structures from captured multidimensional image data, is vital to a number of diagnostic and therapeutic applications. 3D Imaging in Medicine, Second Edition, unique in its contents, covers both the technical aspects and the ac...

Mathematics and Computer Science in Medical Imaging
  • Language: en
  • Pages: 535

Mathematics and Computer Science in Medical Imaging

Medical imaging is an important and rapidly expanding area in medical science. Many of the methods employed are essentially digital, for example computerized tomography, and the subject has become increasingly influenced by develop ments in both mathematics and computer science. The mathematical problems have been the concern of a relatively small group of scientists, consisting mainly of applied mathematicians and theoretical physicists. Their efforts have led to workable algorithms for most imaging modalities. However, neither the fundamentals, nor the limitations and disadvantages of these algorithms are known to a sufficient degree to the physicists, engineers and physicians trying to im...

National Union Catalog
  • Language: en
  • Pages: 616

National Union Catalog

  • Type: Book
  • -
  • Published: 1973
  • -
  • Publisher: Unknown

Includes entries for maps and atlases.

Mathematical Methods in Tomography
  • Language: en
  • Pages: 279

Mathematical Methods in Tomography

  • Type: Book
  • -
  • Published: 2006-11-14
  • -
  • Publisher: Springer

The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction alg...

Computational Radiology and Imaging
  • Language: en
  • Pages: 293

Computational Radiology and Imaging

The articles collected in this volume are based on lectures given at the IMA Workshop, "Computational Radiology and Imaging: Therapy and Diagnostics", March 17-21, 1997. Introductory articles by the editors have been added. The focus is on inverse problems involving electromagnetic radiation and particle beams, with applications to X-ray tomography, nuclear medicine, near-infrared imaging, microwave imaging, electron microscopy, and radiation therapy planning. Mathematical and computational tools and models which play important roles in this volume include the X-ray transform and other integral transforms, the linear Boltzmann equation and, for near-infrared imaging, its diffusion approximation, iterative methods for large linear and non-linear least-squares problems, iterative methods for linear feasibility problems, and optimization methods. The volume is intended not only for mathematical scientists and engineers working on these and related problems, but also for non-specialists. It contains much introductory expository material, and a large number of references. Many unsolved computational and mathematical problems of substantial practical importance are pointed out.

Electron Tomography
  • Language: en
  • Pages: 464

Electron Tomography

This definitive work provides a comprehensive treatment of the mathematical background and working methods of three-dimensional reconstruction from tilt series. Special emphasis is placed on the problems presented by limitations of data collection in the transmission electron microscope. The book, extensively revised and updated, takes the reader from biological specimen preparation to three-dimensional images of the cell and its components.