You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces neural mechanisms of biological vision and how artificial intelligence algorithms learn to interpret images.
A thought-provoking argument that consciousness—more widespread than previously assumed—is the feeling of being alive, not a type of computation or a clever hack In The Feeling of Life Itself, Christof Koch offers a straightforward definition of consciousness as any subjective experience, from the most mundane to the most exalted—the feeling of being alive. Psychologists study which cognitive operations underpin a given conscious perception. Neuroscientists track the neural correlates of consciousness in the brain, the organ of the mind. But why the brain and not, say, the liver? How can the brain—three pounds of highly excitable matter, a piece of furniture in the universe, subject ...
Imagine a world where machines can see and understand the world the way humans do. Rapid progress in artificial intelligence has led to smartphones that recognize faces, cars that detect pedestrians, and algorithms that suggest diagnoses from clinical images, among many other applications. The success of computer vision is founded on a deep understanding of the neural circuits in the brain responsible for visual processing. This book introduces the neuroscientific study of neuronal computations in visual cortex alongside of the psychological understanding of visual cognition and the burgeoning field of biologically-inspired artificial intelligence. Topics include the neurophysiological investigation of visual cortex, visual illusions, visual disorders, deep convolutional neural networks, machine learning, and generative adversarial networks among others. It is an ideal resource for students and researchers looking to build bridges across different approaches to studying and developing visual systems.
How visual content is represented in neuronal population codes and how to analyze such codes with multivariate techniques. Vision is a massively parallel computational process, in which the retinal image is transformed over a sequence of stages so as to emphasize behaviorally relevant information (such as object category and identity) and deemphasize other information (such as viewpoint and lighting). The processes behind vision operate by concurrent computation and message passing among neurons within a visual area and between different areas. The theoretical concept of "population code" encapsulates the idea that visual content is represented at each stage by the pattern of activity across...
Foundational studies of the activities of spiking neurons in the awake and behaving human brain and the insights they yield into cognitive and clinical phenomena. In the last decade, the synergistic interaction of neurosurgeons, engineers, and neuroscientists, combined with new technologies, has enabled scientists to study the awake, behaving human brain directly. These developments allow cognitive processes to be characterized at unprecedented resolution: single neuron activity. Direct observation of the human brain has already led to major insights into such aspects of brain function as perception, language, sleep, learning, memory, action, imagery, volition, and consciousness. In this vol...
Whether we realize it or not, we think of our brains as computers. In neuroscience, the metaphor of the brain as a computer has defined the field for much of the modern era. But as neuroscientists increasingly reevaluate their assumptions about how brains work, we need a new metaphor to help us ask better questions. The computational neuroscientist Daniel Graham offers an innovative paradigm for understanding the brain. He argues that the brain is not like a single computer—it is a communication system, like the internet. Both are networks whose power comes from their flexibility and reliability. The brain and the internet both must route signals throughout their systems, requiring protoco...
The essentials of communication for professionals, educators, students, and entrepreneurs, from organizing your thoughts to inspiring your audience. Do you give presentations at meetings? Do you ever have to explain a complicated subject to audiences unfamiliar with your field? Do you make pitches for ideas or products? Do you want to interest a lecture hall of restless students in subjects that you find fascinating? Then you need this book. Make It Clear explains how to communicate—how to speak and write to get your ideas across. Written by an MIT professor who taught his students these techniques for more than forty years, the book starts with the basics—finding your voice, organizing ...
What is free will? Can it exist in a determined universe? How can we determine who, if anyone, possesses it? Philosophers have debated the extent of human free will for millennia. In recent decades neuroscientists have joined the fray with questions of their own. Which neural mechanisms could enable conscious control of action? What are intentional actions? Do contemporary developments in neuroscience rule out free will or, instead, illuminate how it works? Over the past few years, neuroscientists and philosophers have increasingly come to understand that both fields can make substantive contributions to the free-will debate, so working together is the best path forward to understanding whet...
This book presents a complete overview of all aspects of audiovisual speech including perception, production, brain processing and technology.
Understanding how populations of neurons encode information is the challenge faced by researchers in the field of neural coding. Focusing on the many mysteries and marvels of the mind has prompted a prominent team of experts in the field to put their heads together and fire up a book on the subject. Simply titled Principles of Neural Coding, this b