You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This edited volume presents most techniques and methods that have been developed by material scientists, chemists, chemical engineers and physicists for the commercial production of particulate materials, ranging from the millimeter to the nanometer scale. The scope includes the physical and chemical background, experimental optimization of equipment and procedures, as well as an outlook on future methods. The books addresses issues of industrial importance such as specifications, control parameter(s), control strategy, process models, energy consumption and discusses the various techniques in relation to potential applications. In addition to the production processes, all major unit operati...
Particulate products make up around 80% of chemical products, from all industry sectors. Examples given in this book include the construction materials, fine ceramics and concrete; the delicacies, chocolate and ice cream; pharmaceutical, powders, medical inhalers and sun screen; liquid and powder paints. Size distribution and the shape of the particles provide for different functionalities in these products. Some functions are general, others specific. General functions are powder flow and require – at the typical particulate concentrations of these products – that the particles cause adequate rheological behavior during processing and/or for product performance. Therefore, this book add...
This edited volume brings together the expertise of numerous specialists on the topic of particles – their physical, chemical, pharmacological and toxicological characteristics – when they are a component of pharmaceutical products and formulations. The book discusses in detail properties such as the composition, size, shape, surface properties and porosity of particles with respect to how they impact the formulations and products in which they are used and the effective delivery of pharmaceutical active ingredients. It considers all dosage forms of pharmaceuticals involving particles, from powders to tablets, creams to ointments, and solutions to dry-powder inhalers, also including the latest nanomedicine products. Further, it discusses examples of particle toxicity, as well as the important subject of pharmaceutical industry regulations, guidelines and legislation. The book is of interest to researchers and practitioners who work on testing and developing pharmaceutical dosage and delivery systems.
This book focuses on the practical aspects of particle size measurement: a major difference with existing books, which have a more theoretical approach. Of course, the emphasis still lies on the measurement techniques. For optimum application, their theoretical background is accompanied by quantitative quality aspects, limitations and problem identification. In addition the book covers the phenomena of sampling and dispersion of powders, either of which may be dominant in the overall analysis error. Moreover, there are chapters on the general aspects of quality for particle size analysis, quality management, reference materials and written standards, in- and on-line measurement, definitions and multilingual terminology, and on the statistics required for adequate interpretation of results. Importantly, a relation is made to product performance, both during processing as well as in final application. In view of its set-up, this book is well suited to support particle size measurement courses.
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
Until recently, the chemical industry has been dominated by the manufacture of bulk commodity chemicals such as benzene, ammonia, and polypropylene. However, over the last decade a significant shift occurred. Now most chemical companies devote any new resources to the design and manufacture of specialty, high value-added chemical products such as pharmaceuticals, cosmetics, and electronic coatings. Although the jobs held by chemical engineers have also changed to reflect this altered business, their training has remained static, emphasizing traditional commodities. This ground-breaking text starts to redress the balance between commodities and higher value-added products. It expands the scope of chemical engineering design to encompass both process design and product design. The authors use a four-step procedure for chemical product design - needs, ideas, selection, manufacture - drawing numerous examples from industry to illustrate the discussion. The book concludes with a brief review of the economic issues. Chemical engineering students and beginning chemical engineers will find this text an inviting introduction to chemical product design.
This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.
Serious games provide a unique opportunity to engage students more fully than traditional teaching approaches. Understanding the best way to utilize games and play in an educational setting is imperative for effectual learning in the twenty-first century. Gamification: Concepts, Methodologies, Tools, and Applications investigates the use of games in education, both inside and outside of the classroom, and how this field once thought to be detrimental to student learning can be used to augment more formal models. This four-volume reference work is a premier source for educators, administrators, software designers, and all stakeholders in all levels of education.