You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
New technological innovations and advances in research in areas such as spectroscopy, computer tomography, signal processing, and data analysis require a deep understanding of function approximation using Fourier methods. To address this growing need, this monograph combines mathematical theory and numerical algorithms to offer a unified and self-contained presentation of Fourier analysis. The first four chapters of the text serve as an introduction to classical Fourier analysis in the univariate and multivariate cases, including the discrete Fourier transforms, providing the necessary background for all further chapters. Next, chapters explore the construction and analysis of corresponding ...
Normalizing flows, diffusion normalizing flows and variational autoencoders are powerful generative models. This Element provides a unified framework to handle these approaches via Markov chains. The authors consider stochastic normalizing flows as a pair of Markov chains fulfilling some properties, and show how many state-of-the-art models for data generation fit into this framework. Indeed numerical simulations show that including stochastic layers improves the expressivity of the network and allows for generating multimodal distributions from unimodal ones. The Markov chains point of view enables the coupling of both deterministic layers as invertible neural networks and stochastic layers as Metropolis-Hasting layers, Langevin layers, variational autoencoders and diffusion normalizing flows in a mathematically sound way. The authors' framework establishes a useful mathematical tool to combine the various approaches.
View the abstract. https://www.ams.org/bookstore/pspdf/memo-287-1426-abstract.pdf
Over the last 20 years, multiscale methods and wavelets have revolutionized the field of applied mathematics by providing an efficient means of encoding isotropic phenomena. Directional multiscale systems, particularly shearlets, are now having the same dramatic impact on the encoding of multidimensional signals. Since its introduction about five years ago, the theory of shearlets has rapidly developed and gained wide recognition as the superior way of achieving a truly unified treatment in both a continuous and a digital setting. By now, it has reached maturity as a research field, with rich mathematics, efficient numerical methods, and various important applications.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2011, held in Ein-Gedi, Israel in May/June 2011. The 24 revised full papers presented together with 44 poster papers were carefully reviewed and selected from 78 submissions. The papers are organized in topical sections on denoising and enhancement, segmentation, image representation and invariants, shape analysis, and optical flow.
A state-of-the-art edited survey covering all aspects of sampling theory. Theory, methods and applications are discussed in authoritative expositions ranging from multi-dimensional signal analysis to wavelet transforms. The book is an essential up-to-date resource.
Wavelets: Theory, Algorithms, and Applications is the fifth volume in the highly respected series, WAVELET ANALYSIS AND ITS APPLICATIONS. This volume shows why wavelet analysis has become a tool of choice infields ranging from image compression, to signal detection and analysis in electrical engineering and geophysics, to analysis of turbulent or intermittent processes. The 28 papers comprising this volume are organized into seven subject areas: multiresolution analysis, wavelet transforms, tools for time-frequency analysis, wavelets and fractals, numerical methods and algorithms, and applications. More than 135 figures supplement the text.Features theory, techniques, and applicationsPresents alternative theoretical approaches including multiresolution analysis, splines, minimum entropy, and fractal aspectsContributors cover a broad range of approaches and applications
This book constitutes the refereed proceedings of the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2006, held in Singapore in April 2006. The 67 revised full papers and 33 revised short papers presented together with 3 invited talks were carefully reviewed and selected from 501 submissions. The papers are organized in topical sections on Classification, Ensemble Learning, Clustering, Support Vector Machines, Text and Document Mining, Web Mining, Bio-Data Mining, and more.
This book constitutes the refereed proceedings of the 6th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2017, held in Kolding, Denmark, in June 2017. The 55 revised full papers presented were carefully reviewed and selected from 77 submissions. The papers are organized in the following topical sections: Scale Space and PDE Methods; Restoration and Reconstruction; Tomographic Reconstruction; Segmentation; Convex and Non-Convex Modeling and Optimization in Imaging; Optical Flow, Motion Estimation and Registration; 3D Vision.
This book constitutes the refereed proceedings of the Third International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2005, held in Beijing, China in October 2005 within the scope of ICCV 2005, the International Conference on Computer Vision. The 30 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections and sub-sections as follows: image filtering and reconstruction - image enhancement, inpainting and compression; segmentation and grouping - model-free and model-based segmentation; registration and motion analysis - registration of curves and images, multi-frame segmentation; 3D and reconstruction - computational processes in manifolds, shape from shading, calibration and stereo reconstruction.