You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
For reasons both financial and environmental, there is a perpetual need to optimize the design and operating conditions of industrial process systems in order to improve their performance, energy efficiency, profitability, safety and reliability. However, with most chemical engineering application problems having many variables with complex inter-relationships, meeting these optimization objectives can be challenging. This is where Multi-Objective Optimization (MOO) is useful to find the optimal trade-offs among two or more conflicting objectives. This book provides an overview of the recent developments and applications of MOO for modeling, design and operation of chemical, petrochemical, p...
Optimization has been playing a key role in the design, planning and operation of chemical and related processes for nearly half a century. Although process optimization for multiple objectives was studied by several researchers back in the 1970s and 1980s, it has attracted active research in the last 10 years, spurred by the new and effective techniques for multi-objective optimization. In order to capture this renewed interest, this monograph presents the recent and ongoing research in multi-optimization techniques and their applications in chemical engineering. Following a brief introduction and general review on the development of multi-objective optimization applications in chemical eng...
The use of control systems is necessary for safe and optimal operation of industrial processes in the presence of inevitable disturbances and uncertainties. Plant-wide control (PWC) involves the systems and strategies required to control an entire chemical plant consisting of many interacting unit operations. Over the past 30 years, many tools and methodologies have been developed to accommodate increasingly larger and more complex plants. This book provides a state-of-the-art of techniques for the design and evaluation of PWC systems. Various applications taken from chemical, petrochemical, biofuels and mineral processing industries are used to illustrate the use of these approaches. This book contains 20 chapters organized in the following sections: Overview and Industrial Perspective Tools and Heuristics Methodologies Applications Emerging Topics With contributions from the leading researchers and industrial practitioners on PWC design, this book is key reading for researchers, postgraduate students, and process control engineers interested in PWC.
The proposed book will be divided into three parts. The chapters in Part I provide an overview of certain aspect of process retrofitting. The focus of Part II is on computational techniques for solving process retrofit problems. Finally, Part III addresses retrofit applications from diverse process industries. Some chapters in the book are contributed by practitioners whereas others are from academia. Hence, the book includes both new developments from research and also practical considerations. Many chapters include examples with realistic data. All these feature make the book useful to industrial engineers, researchers and students.
A comprehensive overview of current developments and applications in biofuels production Process Systems Engineering for Biofuels Development brings together the latest and most cutting-edge research on the production of biofuels. As the first book specifically devoted to process systems engineering for the production of biofuels, Process Systems Engineering for Biofuels Development covers theoretical, computational and experimental issues in biofuels process engineering. Written for researchers and postgraduate students working on biomass conversion and sustainable process design, as well as industrial practitioners and engineers involved in process design, modeling and optimization, this b...
Optimization plays a key role in the design, planning and operation of chemical and related processes for several decades. Techniques for solving optimization problems are of deterministic or stochastic type. Of these, stochastic techniques can solve any type of optimization problems and can be adapted for multiple objectives. Differential evolution (DE), proposed about two decades ago, is one of the stochastic techniques. Its algorithm is simple to understand and use. DE has found many applications in chemical engineering.This unique compendium focuses on DE, its recent developments and applications in chemical engineering. It will cover both single and multi-objective optimization. The book contains a number of chapters from experienced editors, and also several chapters from active researchers in this area.
Ch. 1. Introduction / Gade Pandu Rangaiah -- ch. 2. Formulation and illustration of Luus-Jaakola optimization procedure / Rein Luus -- ch. 3. Adaptive random search and simulated annealing optimizers : algorithms and application issues / Jacek M. Jezowski, Grzegorz Poplewski and Roman Bochenek -- ch. 4. Genetic algorithms in process engineering : developments and implementation issues / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 5. Tabu search for global optimization of problems having continuous variables / Sim Mong Kai, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 6. Differential evolution : method, developments and chemical engineering applications / Chen Shaoqiang, Gade ...
Following a brief introduction and general review on the development of multi-objective optimization applications in chemical engineering since 2000, the book gives a description of selected multi-objective techniques and then goes on to discuss chemical engineering applications. These applications are from diverse areas within chemical engineering, and are presented in detail. Several exercises are included at the end of many chapters.
Written by a highly regarded author with industrial and academic experience, this new edition of an established bestselling book provides practical guidance for students, researchers, and those in chemical engineering. The book includes a new section on sustainable energy, with sections on carbon capture and sequestration, as a result of increasing environmental awareness; and a companion website that includes problems, worked solutions, and Excel spreadsheets to enable students to carry out complex calculations.
Optimization has played a key role in the design, planning and operation of chemical and related processes, for several decades. Global optimization has been receiving considerable attention in the past two decades. Of the two types of techniques for global optimization, stochastic global optimization is applicable to any type of problems having non-differentiable functions, discrete variables and/or continuous variables. It, thus, shows significant promise and potential for process optimization.So far, there are no books focusing on stochastic global optimization and its applications in chemical engineering. Stochastic Global Optimization — a monograph with contributions by leading researchers in the area — bridges the gap in this subject, with the aim of highlighting and popularizing stochastic global optimization techniques for chemical engineering applications. The book, with 19 chapters in all, is broadly categorized into two sections that extensively cover the techniques and the chemical engineering applications.