You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Data science and machine learning (ML) methods are increasingly being used to transform the way research is being conducted in materials science to enable new discoveries and design new materials. For any materials science researcher or student, it may be daunting to figure out if ML techniques are useful for them or, if so, which ones are applicable in their individual contexts, and how to study the effectiveness of these methods systematically. KEY FEATURES • Provides broad coverage of data science and ML fundamentals to materials science researchers so that they can confidently leverage these techniques in their research projects. • Offers introductory material in topics such as ML, d...
The search for altenative, renewable sources of fuel and energy from plants, algae, and waste materials has catalyzed in recent years. With the growing interest in bioenergy development and production there has been increasing demand for a broad ranging introductory text in the field. Bioenergy: Principles and Practices provides an invaluable introduction to the fundamentals of bioenergy feedstocks, processing, and industry. Bioenergy provides readers with an understanding of foundational information on 1st, 2nd, and 3rd generation biofuels. Coverage spans from feedstock production of key energy sources such as grasses, canes, and woody plants through chemical conversion processes and industrial application. Each chapter provides a thorough description of fundamental concepts, definitions of key terms, case studies and practical examples and exercises. Bioenergy: Principles and Practices will be an essential resource for students, bioengineers, chemists, and industry personnel tying key concepts of bioenergy science to valuable real world application.
Graphene Extraction from Waste: A Sustainable Synthesis Approach for Graphene and its Derivatives introduces readers to strategies of graphene extraction from waste, an important advance in graphene material development to support the low-cost and large-scale production of this valuable material. The book compares the various green synthesis routes for graphene materials and its derivatives, with a view on environmental consequences, cost-effectiveness, scalability, possible health hazards and toxicity. Other sections discuss different categories of waste, such as plastic waste, agricultural waste and household waste and the specific considerations of deriving graphene from these sources.Thr...
Microorganisms can be both beneficial and harmful to the oil and gas industry and therefore there is an increasing need for the oil industry to characterize, quantify and monitor microbial communities in real time. Oilfield Microbiology offers a fundamental insight into how molecular microbiological methods have enabled researchers in the field to analyze and quantify in situ microbial communities and their activities in response to changing environmental conditions. Such information is fundamental to the oil industry to employ more directed, cost-effective strategies to prevent the major problems associated with deleterious microbial activities (e.g., souring and biocorrosion), as well as t...
Biomass, Biofuels, Biochemicals encompasses the potential of microbial electrochemical technologies, delineating their role in developing a technology for abating environmental crisis and enabling transformation to a sustainable future. The book provides new and futuristic methods for bioelectrogenesis, multiple product synthesis, waste remediation strategies, and electromicrobiology generation which are widely essential to individuals from industry, marketing, activists, writers, etc. In addition, it provides essential knowledge transfer to researchers, students and science enthusiasts on Microbial Electrochemical Technologies, detailing the functional mechanisms employed, various operation...
This book presents recent research and advances in various solid–liquid separation technologies and some applications for treating produced water. It covers fundamental principles and the importance of produced water in major industrial sectors and compares solid–liquid separation technologies. In addition, this book Presents the results of research studies conducted to evaluate the performance of solid–liquid separation technologies Discusses a wide range of technologies, including membrane, filtration, crystallization, desalination, supercritical fluids, coagulation, and floatation Includes experimental, theoretical, modeling, and process design studies With its comprehensive coverage, this book is an essential reference for chemical researchers, scientists, and engineers in industry, academia, and professional laboratories. It is also an important resource for graduate and advanced undergraduate students studying solid–liquid separations.
Providing unique, accessible lessons on engineering, this title in the bestselling 101 Things I Learned® series is a perfect resource for students, recent graduates, general readers, and even seasoned professionals. An experienced civil engineer presents the physics and fundamentals underlying the many fields of engineering. Far from a dry, nuts-and-bolts exposition, 101 Things I Learned® in Engineering School uses real-world examples to show how the engineer's way of thinking can illuminate questions from the simple to the profound: Why shouldn't soldiers march across a bridge? Why do buildings want to float and cars want to fly? What is the difference between thinking systemically and thinking systematically? This informative resource will appeal to students, general readers, and even experienced engineers, who will discover within many provocative insights into familiar principles.
This book encompasses the most updated and recent account of research and implementation of Microbial Electrochemical Technologies (METs) from pioneers and experienced researchers in the field who have been working on the interface between electrochemistry and microbiology/biotechnology for many years. It provides a holistic view of the METs, detailing the functional mechanisms, operational configurations, influencing factors governing the reaction process and integration strategies. The book not only provides historical perspectives of the technology and its evolution over the years but also the most recent examples of up-scaling and near future commercialization, making it a must-read for ...