Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Membrane Reactors for Hydrogen Production Processes
  • Language: en
  • Pages: 244

Membrane Reactors for Hydrogen Production Processes

Membrane Reactors for Hydrogen Production Processes deals with technological and economic aspects of hydrogen selective membranes application in hydrogen production chemical processes. Membrane Reactors for Hydrogen Production Processes starts with an overview of membrane integration in the chemical reaction environment, formulating the thermodynamics and kinetics of membrane reactors and assessing the performance of different process architectures. Then, the state of the art of hydrogen selective membranes, membrane manufacturing processes and the mathematical modeling of membrane reactors are discussed. A review of the most useful applications from an industrial point of view is given. These applications include: natural gas steam reforming, autothermal reforming, water gas shift reaction, decomposition of hydrogen sulphide, and alkanes dehydrogenation. The final part is dedicated to the description of a pilot plant where the novel configuration was implemented at a semi-industrial scale. Plant engineers, researchers and postgraduate students will find Membrane Reactors for Hydrogen Production Processes a comprehensive guide to the state of the art of membrane reactor technology.

Membrane Reactor Engineering
  • Language: en
  • Pages: 348

Membrane Reactor Engineering

Uniquely focussed on the engineering aspects of membrane reactors Provides tools for analysis with specific regard to sustainability Applications include water treatment, wastewater recycling, desalination, biorefineries, agro-food production Membrane reactors can bring energy saving, reduced environmental impact and lower operating costs

CO2: A Valuable Source of Carbon
  • Language: en
  • Pages: 202

CO2: A Valuable Source of Carbon

As the annual production of carbon Dioxide (CO2) reaches 30 billion tones, the growing issue of the greenhouse effect has triggered the development of technologies for CO2 sequestration, storage and use as a reactant. Collecting together the reports of the Congress at University of Rome (Campus Bio-medico) held 16th April 2012, CO2: A Valuable Source of Carbon presents and discusses promising technologies for the industrial exploitation of CO2. Divided into two parts, the current technology is evaluated and summarized before European and national projects are presented. The focus on CO2 recovery, particularly in value-added production, proposes applicable methods to develop sustainable practices and even to mitigate greenhouse gas emission from large-scale fossil fuels usage. Including current data and real-world examples, CO2: A valuable source of carbon provides students, engineers, researchers and industry professional with up-to-date material and potential areas for development and research.

Natural Gas
  • Language: en
  • Pages: 320

Natural Gas

Natural gas has traditionally been used as a feedstock for the chemical industry, and as a fuel for process and space heating. Recent advances in exploration, drilling techniques and hydraulic fracturing have made it possible for natural gas to become available in abundance (as of 2012). As natural gas displaces traditional petroleum use in various sectors, a certain amount of disruption is likely. In such a changing landscape, this book tries to chronicle the state-of-the-art in various aspects of natural gas: exploration, drilling, gas processing, storage, distribution, end use and finally the impact on financial markets. Review articles as well as research papers contributed by leading authorities around the world comprise individual chapters of this book. Modeling approaches, as well as, recent advances in specific natural gas technologies are covered in detail.

Greenhouse Gases
  • Language: en
  • Pages: 352

Greenhouse Gases

Understanding greenhouse gas capture, utilization, reduction, and storage is essential for solving issues such as global warming and climate change that result from greenhouse gas. Taking advantage of the authors' experience in greenhouse gases, this book discusses an overview of recently developed techniques, methods, and strategies: - Novel techniques and methods on greenhouse gas capture by physical adsorption and separation, chemical structural reconstruction, and biological utilization. - Systemic discussions on greenhouse gas reduction by policy conduction, mitigation strategies, and alternative energy sources. - A comprehensive review of geological storage monitoring technologies.

Catalysis, Green Chemistry and Sustainable Energy
  • Language: en
  • Pages: 578

Catalysis, Green Chemistry and Sustainable Energy

  • Type: Book
  • -
  • Published: 2019-11-22
  • -
  • Publisher: Elsevier

Catalysis, Green Chemistry and Sustainable Energy: New Technologies for Novel Business Opportunities offers new possibilities for businesses who want to address the current global transition period to adopt low carbon and sustainable energy production. This comprehensive source provides an integrated view of new possibilities within catalysis and green chemistry in an economic context, showing how these potential new technologies may become useful to business. Fundamentals and specific examples are included to guide the transformation of idea to innovation and business. Offering an overview of the new possibilities for creating business in catalysis, energy and green chemistry, this book is a beneficial tool for students, researchers and academics in chemical and biochemical engineering. Discusses new developments in catalysis, energy and green chemistry from the perspective of converting ideas to innovation and business Presents case histories, preparation of business plans, patent protection and IP rights, creation of start-ups, research funds and successful written proposals Offers an interdisciplinary approach combining science and business

Pd-based Membranes
  • Language: en
  • Pages: 190

Pd-based Membranes

  • Type: Book
  • -
  • Published: 2019-03-26
  • -
  • Publisher: MDPI

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.

Beyond Current Research Trends in CO2 Utilization
  • Language: en
  • Pages: 192
Gasification for Low-grade Feedstock
  • Language: en
  • Pages: 290

Gasification for Low-grade Feedstock

Most coveted energy forms nowadays are gas in nature and electricity due to their environmental cleanness and convenience. Recently, gasification market trend is starting to switch to low-grade feedstock such as biomass, wastes, and low-rank coal that are still not properly utilized. In this sense, the most promising area of development in gasification field lies in low-grade feedstock that should be converted to more user-friendly gas or electricity form in utilization. This book tried to shed light on the works on gasification from many parts of the world and thus can feel the technology status and the areas of interest regarding gasification for low-grade feedstock.

Gasification
  • Language: en
  • Pages: 222

Gasification

Gasification is the thermochemical process of converting carbonaceous material in the presence of an oxidant less than stoichiometric to form a gaseous product, known as synthesis gas or syngas, at high temperatures. The gas produced can have different uses depending on its quality. Among these uses are to drive internal combustion engines and gas turbines, direct burning, and synthesis of chemical components. This book provides a comprehensive overview of the various techniques and applications of syngas developed thus far to contribute to a better understanding of this important process of obtaining a renewable fuel, which is essential for the development of a sustainable economy.